Library UniMath.CategoryTheory.Actegories.ConstructionOfActegories

Construction of actegories:
  • the monoidal category acting on itself
  • reindexing an action from the target of a strong monoidal functor to its source
Reconstructs the results from UniMath.Bicategories.MonoidalCategories.ConstructionOfActions in the whiskered setting.
authors: Ralph Matthes, Kobe Wullaert 2022

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Functors.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects.
Require Import UniMath.CategoryTheory.Actegories.Actegories.

Local Open Scope cat.

Import BifunctorNotations.
Import MonoidalNotations.
Import ActegoryNotations.

Section A.

Context {V : category} (Mon_V : monoidal V).

Definition actegory_with_canonical_self_action_data: actegory_data Mon_V V.
Show proof.
  use make_actegory_data.
  - exact (monoidal_tensor_data Mon_V).
  - exact (lu_{Mon_V}).
  - exact (luinv_{Mon_V}).
  - exact (α_{Mon_V}).
  - exact (αinv_{Mon_V}).

Lemma actegory_with_canonical_self_action_laws: actegory_laws Mon_V actegory_with_canonical_self_action_data.
Show proof.
  split5.
  - apply monoidal_tensor_is_bifunctor.
  - apply monoidal_leftunitorlaw.
  - apply monoidal_associatorlaw.
  - apply monoidal_triangleidentity.
  - apply monoidal_pentagonidentity.

Definition actegory_with_canonical_self_action: actegory Mon_V V :=
  actegory_with_canonical_self_action_data,,actegory_with_canonical_self_action_laws.

Context {C : category} (Act : actegory Mon_V C)
  {W : category} (Mon_W : monoidal W).

Context {F : W V} (U : fmonoidal Mon_W Mon_V F).

Definition reindexed_action_data: bifunctor_data W C C.
Show proof.
  use make_bifunctor_data.
  - intros w x. exact (F w _{Act} x).
  - intros w x x' f. exact (F w ⊗^{Act}_{l} f).
  - intros x w w' g. exact (#F g ⊗^{Act}_{r} x).

Lemma reindexed_action_data_is_bifunctor: is_bifunctor reindexed_action_data.
Show proof.
  split5; red; intros; cbn.
  - apply (bifunctor_leftid Act).
  - rewrite functor_id. apply (bifunctor_rightid Act).
  - apply (bifunctor_leftcomp Act).
  - rewrite functor_comp. apply (bifunctor_rightcomp Act).
  - apply (bifunctor_equalwhiskers Act).

Definition reindexed_action_unitor_data : action_unitor_data Mon_W reindexed_action_data.
Show proof.

Definition reindexed_action_unitorinv_data : action_unitorinv_data Mon_W reindexed_action_data.
Show proof.

Definition reindexed_actor_data : actor_data Mon_W reindexed_action_data.
Show proof.
  intros v w x.
  exact (pr1 (fmonoidal_preservestensorstrongly U v w) ⊗^{Act}_{r} x · ^{Act}_{F v,F w,x}).

Definition reindexed_actorinv_data : actorinv_data Mon_W reindexed_action_data.
Show proof.
  intros v w x.
  exact (aαinv^{Act}_{F v,F w,x} · fmonoidal_preservestensordata U v w ⊗^{Act}_{r} x).

Definition reindexed_actegory_data: actegory_data Mon_W C.
Show proof.

Lemma reindexed_actegory_laws: actegory_laws Mon_W reindexed_actegory_data.
Show proof.
  split5.   - exact reindexed_action_data_is_bifunctor.
  - split3.
    + intros x y f. cbn. unfold reindexed_action_unitor_data.
      etrans.
      2: {
        rewrite assoc'.
        apply maponpaths.
        exact (actegory_unitornat Mon_V Act x y f).
      }
      do 2 rewrite assoc.
      apply maponpaths_2.
      apply (! bifunctor_equalwhiskers Act _ _ _ _ (pr1 (fmonoidal_preservesunitstrongly U)) f).
    + cbn. unfold reindexed_action_unitor_data.
      unfold reindexed_action_unitorinv_data.
      etrans. {
        rewrite assoc'.
        apply maponpaths.
        rewrite assoc.
        apply maponpaths_2.
        exact (pr1 (actegory_unitorisolaw Mon_V Act x)).
      }
      rewrite id_left.
      refine (! bifunctor_rightcomp Act _ _ _ _ _ _ @ _).
      etrans. {
        apply maponpaths.
        exact (pr22 (fmonoidal_preservesunitstrongly U)).
      }
      apply (bifunctor_rightid Act).
    + cbn. unfold reindexed_action_unitor_data.
      unfold reindexed_action_unitorinv_data.
      etrans. {
        rewrite assoc'.
        apply maponpaths.
        rewrite assoc.
        apply maponpaths_2.
        refine (! bifunctor_rightcomp Act _ _ _ _ _ _ @ _).
        apply maponpaths.
        exact (pr12 (fmonoidal_preservesunitstrongly U)).
      }
      rewrite bifunctor_rightid.
      rewrite id_left.
      exact (pr2 (actegory_unitorisolaw Mon_V Act x)).
  - split4.
    + intros v w z z' h.
      cbn.
      unfold reindexed_actor_data.
      rewrite assoc'.
      rewrite (actegory_actornatleft Mon_V Act (F v) (F w) z z' h).
      do 2 rewrite assoc.
      apply maponpaths_2.
      apply (bifunctor_equalwhiskers Act).
    + intros v v' w z f.
      cbn.
      unfold reindexed_actor_data.
      rewrite assoc'.
      rewrite (actegory_actornatright Mon_V Act).
      do 2 rewrite assoc.
      apply maponpaths_2.
      do 2 rewrite (! bifunctor_rightcomp Act _ _ _ _ _ _).
      apply maponpaths.
      apply preserves_tensorinv_nat_right.
      exact (fmonoidal_preservestensornatright U).
    + intros v w w' z g.
      cbn.
      unfold reindexed_actor_data.
      rewrite assoc'.
      rewrite (actegory_actornatleftright Mon_V Act).
      do 2 rewrite assoc.
      apply maponpaths_2.
      do 2 rewrite (! bifunctor_rightcomp Act _ _ _ _ _ _).
      apply maponpaths.
      apply preserves_tensorinv_nat_left.
      exact (fmonoidal_preservestensornatleft U).
    + split.
      * cbn.
        unfold reindexed_actor_data.
        unfold reindexed_actorinv_data.
        etrans. {
          rewrite assoc'.
          apply maponpaths.
          rewrite assoc.
          apply maponpaths_2.
          exact (pr1 (actegory_actorisolaw Mon_V Act (F v) (F w) z)).
        }
        rewrite id_left.
        refine (! bifunctor_rightcomp Act _ _ _ _ _ _ @ _).
        etrans. {
          apply maponpaths.
          exact (pr22 (fmonoidal_preservestensorstrongly U v w)).
        }
        apply bifunctor_rightid.
      * cbn.
        unfold reindexed_actor_data.
        unfold reindexed_actorinv_data.
        etrans. {
          rewrite assoc'.
          apply maponpaths.
          rewrite assoc.
          apply maponpaths_2.
          refine (! bifunctor_rightcomp Act _ _ _ _ _ _ @ _).
          apply maponpaths.
          exact (pr12 (fmonoidal_preservestensorstrongly U v w)).
        }
        rewrite bifunctor_rightid.
        rewrite id_left.
        exact (pr2 (actegory_actorisolaw Mon_V Act (F v) (F w) z)).
  - intros v y.
    cbn.
    unfold reindexed_actor_data.
    unfold reindexed_action_unitor_data.
    rewrite assoc'.
    rewrite (bifunctor_leftcomp Act).
    etrans. {
      apply maponpaths.
      rewrite assoc.
      apply maponpaths_2.
      apply (actegory_actornatleftright Mon_V Act).
    }
    rewrite assoc'.
    etrans.
    { do 2 apply maponpaths.
      apply (actegory_triangleidentity Mon_V Act (F v) y). }
    do 2 rewrite (! bifunctor_rightcomp Act _ _ _ _ _ _).
    apply maponpaths.
    rewrite (! fmonoidal_preservesrightunitality U v).
    etrans. {
      apply maponpaths.
      rewrite assoc.
      apply maponpaths_2.
      rewrite assoc.
      apply maponpaths_2.
      rewrite (! bifunctor_leftcomp Mon_V _ _ _ _ _ _).
      apply maponpaths.
      exact (pr22 (fmonoidal_preservesunitstrongly U)).
    }
    rewrite bifunctor_leftid.
    rewrite id_left.
    rewrite assoc.
    rewrite (pr22 (fmonoidal_preservestensorstrongly U v I_{Mon_W})).
    apply id_left.
  - intros w v v' z.
    cbn.
    unfold reindexed_actor_data.

    etrans.
    2: {
      rewrite assoc.
      apply maponpaths_2.
      rewrite assoc'.
      apply maponpaths.
      exact (! actegory_actornatright Mon_V Act _ _ _ _ _).
    }

    etrans.
    2: {
      rewrite assoc'.
      apply maponpaths.
      rewrite assoc'.
      apply maponpaths.
      exact (actegory_pentagonidentity Mon_V Act (F w) (F v) (F v') z).
    }

    rewrite (bifunctor_leftcomp Act).
    rewrite assoc'.
    etrans. {
      apply maponpaths.
      rewrite assoc.
      apply maponpaths_2.
      rewrite assoc'.
      apply maponpaths.
      apply (actegory_actornatleftright Mon_V Act).
    }

    repeat (rewrite assoc).
    do 2 apply maponpaths_2.
    repeat (rewrite (! bifunctor_rightcomp Act _ _ _ _ _ _)).
    apply maponpaths.
    set ( := fmonoidal_preservesassociativity U).
    apply (! preserves_associativity_of_inverse_preserves_tensor _ _ _ _).

Definition reindexed_actegory: actegory Mon_W C := reindexed_actegory_data,,reindexed_actegory_laws.

End A.

Section B.

  Context {V : category} (Mon_V : monoidal V).

  Definition actegory_with_canonical_pointed_action: actegory (monoidal_pointed_objects Mon_V) V :=
    reindexed_actegory Mon_V (actegory_with_canonical_self_action Mon_V)
      (monoidal_pointed_objects Mon_V) (forget_monoidal_pointed_objects_monoidal Mon_V).

End B.