Library UniMath.CategoryTheory.Monoidal.Functors

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Structure.Symmetric.

Local Open Scope cat.

Import BifunctorNotations.
Import MonoidalNotations.

Section local_helper_lemmas.
  Lemma iso_stable_under_equality
        {C : category}
        {x y : C}
        {f g : Cx,y}
        (p : g = f)
        (Hf : is_z_isomorphism f)
    : is_z_isomorphism g.
  Show proof.
    induction p.
    exact Hf.

  Lemma iso_stable_under_transportf
        {C : category}
        {x y z : C}
        {f : Cx,y}
        (pf : y=z)
        (Hf : is_z_isomorphism f)
    : is_z_isomorphism (transportf _ pf f).
  Show proof.
    induction pf.
    use Hf.

  Lemma iso_stable_under_equalitytransportf
        {C : category}
        {x y z : C}
        {f : Cx,y} {g : Cx,z}
        {pf : y = z}
        (qg : g = transportf _ pf f)
        (Hf : is_z_isomorphism f)
    : is_z_isomorphism g.
  Show proof.
    use (iso_stable_under_equality qg).
    use (iso_stable_under_transportf).
    exact Hf.
End local_helper_lemmas.

Section MonoidalFunctors.
1. Lax monoidal functors (Weak) Monoidal functors

  Definition preserves_tensordata
             {C D : category}
             (M : monoidal C)
             (N : monoidal D)
             (F : functor C D)
    : UU
    := (x y : C), D F x _{ N} F y, F (x _{ M} y) .

  Definition preserves_unit
             {C D : category}
             (M : monoidal C)
             (N : monoidal D)
             (F : functor C D)
    : UU
    := D I_{N} , F I_{M} .

  Definition fmonoidal_data
             {C D : category}
             (M : monoidal C)
             (N : monoidal D)
             (F : functor C D)
    : UU
    := preserves_tensordata M N F × preserves_unit M N F.

  Definition fmonoidal_preservestensordata
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd : fmonoidal_data M N F)
    : preserves_tensordata M N F
    := pr1 fmd.

  Definition fmonoidal_preservesunit
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd : fmonoidal_data M N F)
    : preserves_unit M N F
    := pr2 fmd.

  Lemma fmonoidal_data_eq
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd1 fmd2 : fmonoidal_data M N F)
    : ( x y : C, fmonoidal_preservestensordata fmd1 x y = fmonoidal_preservestensordata fmd2 x y) ->
      fmonoidal_preservesunit fmd1 = fmonoidal_preservesunit fmd2 -> fmd1 = fmd2.
  Show proof.
    intros pT pU.
    use total2_paths_f.
    - do 2 (apply funextsec ; intro) ; apply pT.
    - rewrite transportf_const.
      apply pU.

Properties
  Definition preserves_tensor_nat_left
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
    : UU
    := (x y1 y2 : C) (g : Cy1,y2),
       F x ⊗^{ N}_{l} # F g · pt x y2
       =
       pt x y1 · # F (x ⊗^{ M}_{l} g).

  Definition preserves_tensor_nat_right
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
    : UU
    := (x1 x2 y : C) (f : Cx1,x2),
       # F f ⊗^{ N}_{r} F y · pt x2 y
       =
       pt x1 y · # F (f ⊗^{ M}_{r} y).

  Definition preserves_leftunitality
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
             (pu : preserves_unit M N F)
    : UU
    := (x : C),
       (pu ⊗^{ N}_{r} F x) · (pt I_{M} x) · (# F lu^{ M }_{ x})
       =
       lu^{ N }_{ F x}.

  Definition preserves_leftunitalityinv
         {C D : category}
         {M : monoidal C}
         {N : monoidal D}
         {F : functor C D}
         (pt : preserves_tensordata M N F)
         (pu : preserves_unit M N F)
    : UU
    := (x : C),
       luinv^{ N }_{ F x} · (pu ⊗^{ N}_{r} F x) · (pt I_{M} x)
       =
       # F luinv^{ M }_{ x}.

  Definition preserves_rightunitality
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
             (pu : preserves_unit M N F)
    : UU
    := (x : C),
       ((F x ⊗^{ N}_{l} pu) · (pt x I_{M}) · (# F ru^{ M }_{ x})
       =
       ru^{ N }_{ F x}).

  Definition preserves_rightunitalityinv
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
             (pu : preserves_unit M N F)
    : UU
    := (x : C),
       ruinv^{ N }_{ F x} · F x ⊗^{ N}_{l} pu · pt x I_{M}
       =
       # F ruinv^{ M }_{ x}.

  Definition preserves_associativity
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
    : UU
    := (x y z : C),
       ((pt x y) ⊗^{N}_{r} (F z)) · (pt (x _{M} y) z) · (#F (α^{M}_{x,y,z}))
       =
       α^{N}_{F x, F y, F z} · ((F x) ⊗^{N}_{l} (pt y z)) · (pt x (y _{M} z)).

  Definition preserves_associativityinv
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
    : UU
    := (x y z : C),
       αinv^{N}_{F x, F y, F z} · ((pt x y) ⊗^{N}_{r} (F z)) · (pt (x _{M} y) z)
       =
       ((F x) ⊗^{N}_{l} (pt y z)) · (pt x (y _{M} z)) · (#F (αinv^{M}_{x,y,z})).

  Definition fmonoidal_laxlaws
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd : fmonoidal_data M N F)
    : UU
    := (preserves_tensor_nat_left (fmonoidal_preservestensordata fmd)) ×
       (preserves_tensor_nat_right (fmonoidal_preservestensordata fmd)) ×
       (preserves_associativity (fmonoidal_preservestensordata fmd)) ×
       (preserves_leftunitality
          (fmonoidal_preservestensordata fmd)
          (fmonoidal_preservesunit fmd)) ×
       (preserves_rightunitality
          (fmonoidal_preservestensordata fmd)
          (fmonoidal_preservesunit fmd)).

  Lemma isaprop_fmonoidal_laxlaws
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd : fmonoidal_data M N F) : isaprop (fmonoidal_laxlaws fmd).
  Show proof.
    repeat (apply isapropdirprod); repeat (apply impred; intro); apply D.

  Definition fmonoidal_lax
             {C D : category}
             (M : monoidal C)
             (N : monoidal D)
             (F : functor C D)
    : UU
    := (fmd : fmonoidal_data M N F), fmonoidal_laxlaws fmd.

  Definition fmonoidal_fdata
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : fmonoidal_data M N F
    := pr1 fm.
  Coercion fmonoidal_fdata : fmonoidal_lax >-> fmonoidal_data.

  Lemma fmonoidal_lax_eq
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd fmd' : fmonoidal_lax M N F) :
    pr1 fmd = pr1 fmd' -> fmd = fmd'.
  Show proof.
    intro H.
    apply subtypePath.
    - intro; apply isaprop_fmonoidal_laxlaws.
    - exact H.

  Definition fmonoidal_flaws
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : fmonoidal_laxlaws fm
    := pr2 fm.

  Definition fmonoidal_preservestensornatleft
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : preserves_tensor_nat_left (fmonoidal_preservestensordata fm)
    := pr12 fm.

  Definition fmonoidal_preservestensornatright
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : preserves_tensor_nat_right (fmonoidal_preservestensordata fm)
    := pr122 fm.

  Definition fmonoidal_preservesassociativity
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : preserves_associativity (fmonoidal_preservestensordata fm)
    := pr1 (pr222 fm).

  Lemma fmonoidal_preservesassociativityinv
        {C D : category}
        {M : monoidal C}
        {N : monoidal D}
        {F : functor C D}
        (fm : fmonoidal_lax M N F)
    : preserves_associativityinv (fmonoidal_preservestensordata fm).
  Show proof.
    intros x y z.
    rewrite assoc'.
    apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_associatorisolaw N _ _ _)).
    cbn.
    etrans.
    2: { repeat rewrite assoc. apply cancel_postcomposition.
         apply fmonoidal_preservesassociativity. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { apply maponpaths.
         rewrite <- functor_comp.
         apply maponpaths.
         apply pathsinv0, (monoidal_associatorisolaw M). }
    rewrite functor_id.
    apply pathsinv0, id_right.

  Definition fmonoidal_preservesleftunitality
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : preserves_leftunitality
        (fmonoidal_preservestensordata fm)
        (fmonoidal_preservesunit fm)
    := pr12 (pr222 fm).

  Lemma fmonoidal_preservesleftunitalityinv
        {C D : category}
        {M : monoidal C}
        {N : monoidal D}
        {F : functor C D}
        (fm : fmonoidal_lax M N F)
    : preserves_leftunitalityinv
        (fmonoidal_preservestensordata fm)
        (fmonoidal_preservesunit fm).
  Show proof.
    intro x.
    rewrite assoc'.
    apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_leftunitorisolaw N (F x))).
    cbn.
    rewrite <- (fmonoidal_preservesleftunitality fm).
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { apply maponpaths.
         apply functor_comp. }
    etrans.
    2: { do 2 apply maponpaths.
         apply pathsinv0, (pr1(monoidal_leftunitorisolaw M x)). }
    rewrite functor_id.
    apply pathsinv0, id_right.

  Definition fmonoidal_preservesrightunitality
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fm : fmonoidal_lax M N F)
    : preserves_rightunitality
        (fmonoidal_preservestensordata fm)
        (fmonoidal_preservesunit fm)
    := pr22 (pr222 fm).

  Lemma fmonoidal_preservesrightunitalityinv
        {C D : category}
        {M : monoidal C}
        {N : monoidal D}
        {F : functor C D}
        (fm : fmonoidal_lax M N F)
    : preserves_rightunitalityinv
        (fmonoidal_preservestensordata fm)
        (fmonoidal_preservesunit fm).
  Show proof.
    intro x.
    rewrite assoc'.
    apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_rightunitorisolaw N (F x))).
    cbn.
    rewrite <- (fmonoidal_preservesrightunitality fm).
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { apply maponpaths.
         apply functor_comp. }
    etrans.
    2: { do 2 apply maponpaths.
         apply pathsinv0, (pr1(monoidal_rightunitorisolaw M x)). }
    rewrite functor_id.
    apply pathsinv0, id_right.

  Definition preserves_tensor_strongly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
    : UU
    := (x y : C), is_z_isomorphism (pt x y).

  Definition pointwise_z_iso_from_preserves_tensor_strongly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             {pt : preserves_tensordata M N F}
             (pts : preserves_tensor_strongly pt) (x y : C)
    : z_iso (F x _{ N} F y) (F (x _{ M} y))
    := pt x y ,, pts x y.

  Lemma preserves_associativity_of_inverse_preserves_tensor
        {C D : category}
        {M : monoidal C} {N : monoidal D}
        {F : functor C D}
        {pt : preserves_tensordata M N F}
        (ptα : preserves_associativity pt)
        (pts : preserves_tensor_strongly pt) (x y z : C)
    : (is_z_isomorphism_mor (pts (x _{M} y) z))
      · ((is_z_isomorphism_mor (pts x y)) ⊗^{N}_{r} (F z))
      · α^{N}_{F x, F y, F z}
      =
      (#F (α^{M}_{x,y,z}))
      · (is_z_isomorphism_mor (pts x (y _{M} z)))
      · ((F x) ⊗^{N}_{l} (is_z_isomorphism_mor (pts y z))).
  Show proof.
    set (ptsx_yz := pointwise_z_iso_from_preserves_tensor_strongly pts x (y _{M} z)).
    set (ptsxy_z := pointwise_z_iso_from_preserves_tensor_strongly pts (x _{M} y) z).
    set (ptsfx := functor_on_z_iso
          (leftwhiskering_functor N (F x))
          (pointwise_z_iso_from_preserves_tensor_strongly pts y z)).
    set (ptsfz := functor_on_z_iso
          (rightwhiskering_functor N (F z))
          (pointwise_z_iso_from_preserves_tensor_strongly pts x y)).

    apply (z_iso_inv_on_left _ _ _ _ ptsfx).
    apply pathsinv0.
    apply (z_iso_inv_on_left _ _ _ _ ptsx_yz).
    rewrite assoc'.
    rewrite assoc'.
    etrans.
    2: {
      apply maponpaths.
      rewrite assoc.
      exact (ptα x y z).
    }
    etrans.
    2: {
      rewrite assoc'.
      apply maponpaths.
      rewrite assoc.
      apply maponpaths_2.
      rewrite assoc.
      apply maponpaths_2.
      exact (! pr222 ptsfz).
    }
    rewrite id_left.
    etrans.
    2: {
      rewrite assoc.
      apply maponpaths_2.
      exact (! pr222 ptsxy_z).
    }
    apply (! id_left _).

  Lemma preserves_tensorinv_nat_right
        {C D : category}
        {M : monoidal C} {N : monoidal D}
        {F : functor C D}
        {pt : preserves_tensordata M N F}
        (pts : preserves_tensor_strongly pt)
        (ptrn : preserves_tensor_nat_right pt)
        (x1 x2 y : C)
        (f : Cx1,x2)
    : (is_z_isomorphism_mor (pts x1 y)) · # F f ⊗^{ N}_{r} F y
      =
      # F (f ⊗^{ M}_{r} y) · (is_z_isomorphism_mor (pts x2 y)).
  Show proof.
    set (ptiso := pt x1 y ,, pts x1 y : z_iso _ _).
    apply (z_iso_inv_on_right _ _ _ ptiso).
    rewrite assoc.
    etrans.
    2: {
      apply maponpaths_2.
      apply ptrn.
    }
    rewrite assoc'.
    unfold is_z_isomorphism_mor.
    rewrite (pr12 (pts x2 y)).
    apply (! id_right _).

  Lemma preserves_tensorinv_nat_left
        {C D : category}
        {M : monoidal C} {N : monoidal D}
        {F : functor C D}
        {pt : preserves_tensordata M N F}
        (pts : preserves_tensor_strongly pt)
        (ptrn : preserves_tensor_nat_left pt)
        (x1 x2 y : C)
        (f : Cx1,x2)
    : (is_z_isomorphism_mor (pts y x1)) · F y ⊗^{ N}_{l} # F f
      =
      # F (y ⊗^{ M}_{l} f) · (is_z_isomorphism_mor (pts y x2)).
  Show proof.
    set (ptiso := pt y x1 ,, pts y x1 : z_iso _ _).
    apply (z_iso_inv_on_right _ _ _ ptiso).
    rewrite assoc.
    etrans.
    2: {
      apply maponpaths_2.
      apply ptrn.
    }
    rewrite assoc'.
    unfold is_z_isomorphism_mor.
    rewrite (pr12 (pts y x2)).
    apply (! id_right _).

  Definition preserves_unit_strongly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (pu : preserves_unit M N F)
    : UU
    := is_z_isomorphism pu.

  Definition fmonoidal_stronglaws
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
             (pu : preserves_unit M N F)
    : UU
    := preserves_tensor_strongly pt × preserves_unit_strongly pu.

  Lemma isaprop_fmonoidal_stronglaws
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (Fm : fmonoidal_data M N F)
    : isaprop (fmonoidal_stronglaws (pr1 Fm) (pr2 Fm)).
  Show proof.
    apply isapropdirprod ; repeat (apply impred_isaprop ; intro) ; apply isaprop_is_z_isomorphism.

2. Strong monoidal functors
  Definition fmonoidal
             {C D : category}
             (M : monoidal C)
             (N : monoidal D)
             (F : functor C D)
    : UU :=
     (Fm : fmonoidal_lax M N F),
      fmonoidal_stronglaws (fmonoidal_preservestensordata Fm) (fmonoidal_preservesunit Fm).

  Definition fmonoidal_fmonoidallax
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (Fm : fmonoidal M N F)
    : fmonoidal_lax M N F
    := pr1 Fm.
  Coercion fmonoidal_fmonoidallax : fmonoidal >-> fmonoidal_lax.

  Definition fmonoidal_preservestensorstrongly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (Fm : fmonoidal M N F)
    : preserves_tensor_strongly (fmonoidal_preservestensordata Fm)
    := pr12 Fm.

  Definition fmonoidal_preservesunitstrongly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (Fm : fmonoidal M N F)
    : preserves_unit_strongly (fmonoidal_preservesunit Fm)
    := pr22 Fm.

  Lemma fmonoidal_eq
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             (fmd fmd' : fmonoidal M N F) :
    pr1 fmd = pr1 fmd' -> fmd = fmd'.
  Show proof.
    intro H.
    apply subtypePath.
    - intro; apply isaprop_fmonoidal_stronglaws.
    - exact H.

We now show that everything behaves as expected
  Definition functor_imageoftensor
             {C D : category}
             (M : monoidal C)
             (F : functor C D)
    : bifunctor C C D
    := compose_bifunctor_with_functor M F.

  Definition functor_tensorofimages
             {C D : category}
             (F : functor C D)
             (N : monoidal D)
    : bifunctor C C D
    := compose_functor_with_bifunctor F F N.

  Definition preserves_tensor_is_nattrans_type
             {C D : category}
             (M : monoidal C)
             (N : monoidal D)
             (F : functor C D)
    : UU
    := binat_trans (functor_tensorofimages F N) (functor_imageoftensor M F).

  Definition preservestensor_is_nattrans
             {C D : category}
             {M : monoidal C}
             {N : monoidal D}
             {F : functor C D}
             {pt : preserves_tensordata M N F}
             (ptnl : preserves_tensor_nat_left pt)
             (ptnr : preserves_tensor_nat_right pt)
    : preserves_tensor_is_nattrans_type M N F.
  Show proof.
    use make_binat_trans.
    - use make_binat_trans_data.
      intros x y.
      apply pt.
    - use tpair.
      + intros x y1 y2 g.
        apply ptnl.
      + intros x1 x2 y f.
        apply ptnr.

  Lemma preservestensor_is_nattrans_full
        {C D : category}
        {M : monoidal C}
        {N : monoidal D}
        {F : functor C D}
        {pt : preserves_tensordata M N F}
        (ptnl : preserves_tensor_nat_left pt)
        (ptnr : preserves_tensor_nat_right pt)
    : (x1 x2 y1 y2 : C) (f : Cx1,x2) (g : Cy1,y2),
      # F f ⊗^{ N} # F g · pt x2 y2 = pt x1 y1 · # F (f ⊗^{ M} g).
  Show proof.
    intros.
    etrans.
    { unfold functoronmorphisms1.
      rewrite assoc'.
      rewrite ptnl.
      apply assoc. }
    rewrite ptnr.
    rewrite assoc'.
    apply maponpaths.
    apply pathsinv0, functor_comp.

  Definition preserves_tensor_inv_is_nattrans_type
             {C D : category}
             (M : monoidal C) (N : monoidal D)
             (F : functor C D)
    : UU
    := binat_trans (functor_imageoftensor M F) (functor_tensorofimages F N).

  Definition preservestensor_inv_is_nattrans
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             {pt : preserves_tensordata M N F}
             (ptnl : preserves_tensor_nat_left pt)
             (ptnr : preserves_tensor_nat_right pt)
             (ptstr: preserves_tensor_strongly pt)
    : preserves_tensor_inv_is_nattrans_type M N F
    := inv_binattrans_from_binatiso(α:=preservestensor_is_nattrans ptnl ptnr) ptstr.

  Definition preserves_leftunitality'
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             {pt : preserves_tensordata M N F}
             {pu : preserves_unit M N F}
             (plu : preserves_leftunitality pt pu)
    : (x : C),
      (pu ⊗^{N} (identity (F x))) · (pt I_{M} x) · (#F (lu^{M}_{x}))
      =
      lu^{N}_{F x}.
  Show proof.
    intro x.
    unfold functoronmorphisms1.
    rewrite (bifunctor_leftid N).
    rewrite id_right.
    apply plu.

  Definition preserves_rightunitality'
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             {pt : preserves_tensordata M N F}
             {pu : preserves_unit M N F}
             (pru : preserves_rightunitality pt pu)
    : (x : C),
      ((identity (F x)) ⊗^{N} pu) · (pt x I_{M}) · (#F (ru^{M}_{x}))
      =
      ru^{N}_{F x}.
  Show proof.
    intro x.
    unfold functoronmorphisms1.
    rewrite (bifunctor_rightid N).
    rewrite id_left.
    apply pru.

  Definition preserves_leftunitality''
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D} (Fm : fmonoidal M N F)
    : (x : C),
      (pr1 (fmonoidal_preservestensorstrongly Fm I_{M} x))
      · (pr1 (fmonoidal_preservesunitstrongly Fm) ⊗^{N} (identity (F x)))
      · lu^{N}_{F x}
      =
      #F (lu^{M}_{x}).
  Show proof.
    intro x.
    set (plu := preserves_leftunitality' (fmonoidal_preservesleftunitality (pr1 Fm)) x).
    rewrite (! plu).
    rewrite ! assoc.

    etrans. {
      apply maponpaths_2.
      apply maponpaths_2.
      rewrite assoc'.
      apply maponpaths.
      unfold functoronmorphisms1.
      do 2 rewrite (bifunctor_leftid N).
      do 2 rewrite id_right.
      rewrite <- (bifunctor_rightcomp N).
      apply maponpaths.
      apply (fmonoidal_preservesunitstrongly Fm).
    }
    rewrite bifunctor_rightid.
    rewrite id_right.
    etrans. {
      apply maponpaths_2.
      apply (fmonoidal_preservestensorstrongly Fm).
    }
    apply id_left.

  Proposition strong_fmonoidal_preserves_associativity
              {C D : category}
              {M : monoidal C} {N : monoidal D}
              {F : functor C D}
              (Fm : fmonoidal M N F)
              (x y z : C)
    : # F (α^{M}_{x , y , z})
      =
      inv_from_z_iso (_ ,, fmonoidal_preservestensorstrongly Fm _ _)
      · (inv_from_z_iso (_ ,, fmonoidal_preservestensorstrongly Fm _ _) ⊗^{N}_{r} _)
      · (α^{N}_{ F x , F y , F z})
      · (F x ⊗^{ N}_{l} fmonoidal_preservestensordata Fm y z)
      · fmonoidal_preservestensordata Fm x (y _{ M} z).
  Show proof.
    rewrite !assoc'.
    refine (!_).
    etrans.
    {
      do 2 apply maponpaths.
      rewrite !assoc.
      exact (!(fmonoidal_preservesassociativity Fm x y z)).
    }
    rewrite !assoc.
    refine (_ @ id_left _).
    apply maponpaths_2.
    rewrite !assoc'.
    etrans.
    {
      apply maponpaths.
      rewrite !assoc.
      apply maponpaths_2.
      etrans.
      {
        refine (!_).
        apply (bifunctor_rightcomp N).
      }
      apply maponpaths.
      apply z_iso_after_z_iso_inv.
    }
    rewrite (bifunctor_rightid N).
    rewrite id_left.
    apply z_iso_after_z_iso_inv.

3. Strict monoidal functors
  Definition preserves_tensor_strictly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (pt : preserves_tensordata M N F)
    : UU
    := (x y : C), (pf : (F x) _{N} (F y) = F (x _{M} y)),
       pt x y = transportf _ pf (identity ((F x) _{N} (F y))).

  Lemma strictlytensorpreserving_is_strong
        {C D : category}
        {M : monoidal C} {N : monoidal D}
        {F : functor C D}
        {pt : preserves_tensordata M N F}
        (pst : preserves_tensor_strictly pt)
    : preserves_tensor_strongly pt.
  Show proof.
    intros x y.
    use (iso_stable_under_equalitytransportf
           (pr2 (pst x y))
           (is_z_isomorphism_identity (F x _{N} F y))).

  Definition preserves_unit_strictly
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             (pu : preserves_unit M N F) : UU
    := (pf : I_{N} = (F I_{M})),
       pu = transportf _ pf (identity I_{N}).

  Definition strictlyunitpreserving_is_strong
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             {F : functor C D}
             {pu : preserves_unit M N F}
             (pus : preserves_unit_strictly pu)
    : preserves_unit_strongly pu.
  Show proof.

4. Symmetric monoidal functors
  Definition is_symmetric_monoidal_functor
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             (HM : symmetric M) (HN : symmetric N)
             {F : functor C D}
             (HF : fmonoidal_lax M N F)
    : UU
    := (x y : C),
       monoidal_braiding_data (symmetric_to_braiding HN) (F x) (F y)
       · fmonoidal_preservestensordata HF y x
       =
       fmonoidal_preservestensordata HF x y
       · #F(monoidal_braiding_data (symmetric_to_braiding HM) x y).

  Lemma isaprop_is_symmetric_monoidal_functor
             {C D : category}
             {M : monoidal C} {N : monoidal D}
             (HM : symmetric M) (HN : symmetric N)
             {F : functor C D}
             (HF : fmonoidal_lax M N F) :
    isaprop (is_symmetric_monoidal_functor HM HN HF).
  Show proof.
    apply impred; intro c; apply impred; intro c'; apply D.

5. The identity is strong monoidal towards a bicategory of monoidal categories
  Definition identity_fmonoidal_data
             {C : category}
             (M : monoidal C)
    : fmonoidal_data M M (functor_identity C).
  Show proof.
    split.
    - intros x y. apply identity.
    - apply identity.

  Lemma identity_fmonoidal_laxlaws
        {C : category}
        (M : monoidal C)
    : fmonoidal_laxlaws (identity_fmonoidal_data M).
  Show proof.
    repeat split; red; unfold fmonoidal_preservesunit, fmonoidal_preservestensordata; cbn; intros.
    - rewrite id_left. apply id_right.
    - rewrite id_left. apply id_right.
    - do 2 rewrite id_right.
      rewrite (bifunctor_rightid M).
      rewrite (bifunctor_leftid M).
      rewrite id_right.
      apply id_left.
    - rewrite id_right.
      rewrite (bifunctor_rightid M).
      apply id_left.
    - rewrite id_right.
      rewrite (bifunctor_leftid M).
      apply id_left.

  Definition identity_fmonoidal_lax
             {C : category}
             (M : monoidal C)
    : fmonoidal_lax M M (functor_identity C)
    := identity_fmonoidal_data M ,, identity_fmonoidal_laxlaws M.

  Definition identity_fmonoidal_stronglaws
             {C : category}
             (M : monoidal C)
    : fmonoidal_stronglaws
        (fmonoidal_preservestensordata (identity_fmonoidal_lax M))
        (fmonoidal_preservesunit (identity_fmonoidal_lax M)).
  Show proof.
    split.
    - intros x y. apply is_z_isomorphism_identity.
    - apply is_z_isomorphism_identity.

  Definition identity_fmonoidal
             {C : category}
             (M : monoidal C)
    : fmonoidal M M (functor_identity C)
    := identity_fmonoidal_lax M ,, identity_fmonoidal_stronglaws M.

  Proposition is_symmetric_monoidal_identity
              {C : category}
              {M : monoidal C}
              (HM : symmetric M)
    : is_symmetric_monoidal_functor HM HM (identity_fmonoidal_lax M).
  Show proof.
    intros x y.
    cbn.
    rewrite id_left, id_right.
    apply idpath.

6. Composition preserves lax/strongly monoidal functors
  Definition comp_fmonoidal_data
             {C D E : category}
             {M : monoidal C} {N : monoidal D} {O : monoidal E}
             {F : C D} {G : D E}
             (Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
    : fmonoidal_data M O (F G).
  Show proof.
    split.
    - intros x y.
      exact (fmonoidal_preservestensordata Gm (F x) (F y)
             · #G (fmonoidal_preservestensordata Fm x y)).
    - exact (fmonoidal_preservesunit Gm
            · #G (fmonoidal_preservesunit Fm)).

  Lemma comp_fmonoidal_laxlaws
        {C D E : category}
        {M : monoidal C} {N : monoidal D} {O : monoidal E}
        {F : C D} {G : D E}
        (Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
    : fmonoidal_laxlaws (comp_fmonoidal_data Fm Gm).
  Show proof.
    repeat split; red; cbn; unfold fmonoidal_preservesunit, fmonoidal_preservestensordata; cbn; intros.
    - etrans.
      2: { rewrite assoc'. apply maponpaths. apply functor_comp. }
      etrans.
      2: { do 2 apply maponpaths. apply fmonoidal_preservestensornatleft. }
      rewrite functor_comp.
      repeat rewrite assoc.
      apply cancel_postcomposition.
      apply fmonoidal_preservestensornatleft.
    - etrans.
      2: { rewrite assoc'. apply maponpaths. apply functor_comp. }
      etrans.
      2: { do 2 apply maponpaths. apply fmonoidal_preservestensornatright. }
      rewrite functor_comp.
      repeat rewrite assoc.
      apply cancel_postcomposition.
      apply fmonoidal_preservestensornatright.
    - assert (auxF := fmonoidal_preservesassociativity Fm x y z).
      unfold fmonoidal_preservestensordata in auxF.
      assert (auxG := fmonoidal_preservesassociativity Gm (F x) (F y) (F z)).
      unfold fmonoidal_preservestensordata in auxG.
      rewrite (bifunctor_leftcomp O).
      rewrite (bifunctor_rightcomp O).
      etrans.
      2: { repeat rewrite assoc. apply cancel_postcomposition.
           repeat rewrite assoc'. do 2 apply maponpaths.
           apply pathsinv0, fmonoidal_preservestensornatleft. }
      etrans.
      2: { apply cancel_postcomposition.
           repeat rewrite assoc. apply cancel_postcomposition.
           exact auxG. }
      repeat rewrite assoc'. apply maponpaths.
      etrans.
      2: { apply maponpaths.
           rewrite <- functor_comp.
           apply functor_comp. }
      etrans.
      2: { do 2 apply maponpaths.
           rewrite assoc.
           exact auxF. }
      do 2 rewrite functor_comp.
      repeat rewrite assoc.
      do 2 apply cancel_postcomposition.
      apply fmonoidal_preservestensornatright.
    - assert (auxF := fmonoidal_preservesleftunitality Fm x).
      assert (auxG := fmonoidal_preservesleftunitality Gm (F x)).
      unfold fmonoidal_preservesunit, fmonoidal_preservestensordata in auxF, auxG.
      etrans; [| exact auxG].
      clear auxG.
      rewrite (bifunctor_rightcomp O).
      rewrite <- auxF.
      clear auxF.
      do 2 rewrite functor_comp.
      repeat rewrite assoc.
      do 2 apply cancel_postcomposition.
      repeat rewrite assoc'.
      apply maponpaths.
      apply fmonoidal_preservestensornatright.
    - assert (auxF := fmonoidal_preservesrightunitality Fm x).
      assert (auxG := fmonoidal_preservesrightunitality Gm (F x)).
      unfold fmonoidal_preservesunit, fmonoidal_preservestensordata in auxF, auxG.
      etrans; [| exact auxG].
      clear auxG.
      rewrite (bifunctor_leftcomp O).
      rewrite <- auxF.
      clear auxF.
      do 2 rewrite functor_comp.
      repeat rewrite assoc.
      do 2 apply cancel_postcomposition.
      repeat rewrite assoc'.
      apply maponpaths.
      apply fmonoidal_preservestensornatleft.

  Definition comp_fmonoidal_lax
             {C D E : category}
             {M : monoidal C} {N : monoidal D} {O : monoidal E}
             {F : C D} {G : D E}
             (Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
    : fmonoidal_lax M O (F G)
    := comp_fmonoidal_data Fm Gm ,, comp_fmonoidal_laxlaws Fm Gm.

  Section CompStrongMonoidal.
    Context {C D E : category}
            {M : monoidal C} {N : monoidal D} {O : monoidal E}
            {F : C D} {G : D E}
            (Fm : fmonoidal M N F) (Gm : fmonoidal N O G).

    Let comp_fmnoidal_unit_inv
      : G (F I_{M}) --> I_{O}
      := #G (pr1 (fmonoidal_preservesunitstrongly Fm))
         · pr1 (fmonoidal_preservesunitstrongly Gm).

    Let comp_fmonoidal_tensor_inv
        (x y : C)
      : G (F (x _{ M } y)) --> G (F x) _{ O } G (F y)
      := #G (pr1 (fmonoidal_preservestensorstrongly Fm x y))
         · pr1 (fmonoidal_preservestensorstrongly Gm (F x) (F y)).

    Lemma comp_fmonoidal_tensor_inv_laws
          (x y : C)
      : is_inverse_in_precat
          (fmonoidal_preservestensordata (comp_fmonoidal_lax Fm Gm) x y)
          (comp_fmonoidal_tensor_inv x y).
    Show proof.
      unfold comp_fmonoidal_tensor_inv.
      split.
      - cbn.
        etrans.
        {
          rewrite !assoc'.
          apply maponpaths.
          rewrite assoc.
          apply cancel_postcomposition.
          rewrite <- functor_comp.
          apply maponpaths.
          apply (pr12 (fmonoidal_preservestensorstrongly Fm x y)).
        }
        rewrite functor_id.
        rewrite id_left.
        apply (pr12 (fmonoidal_preservestensorstrongly Gm (F x) (F y))).
      - cbn.
        etrans.
        {
          rewrite !assoc'.
          apply maponpaths.
          rewrite assoc.
          apply cancel_postcomposition.
          apply (pr22 (fmonoidal_preservestensorstrongly Gm (F x) (F y))).
        }
        rewrite id_left.
        rewrite <- functor_comp.
        etrans.
        {
          apply maponpaths.
          apply (pr22 (fmonoidal_preservestensorstrongly Fm x y)).
        }
        apply functor_id.

    Lemma comp_fmonoidal_unit_inv_laws
      : is_inverse_in_precat
          (fmonoidal_preservesunit (comp_fmonoidal_lax Fm Gm))
          comp_fmnoidal_unit_inv.
    Show proof.
      unfold comp_fmnoidal_unit_inv.
      split.
      - cbn.
        etrans.
        {
          rewrite !assoc'.
          apply maponpaths.
          rewrite assoc.
          apply cancel_postcomposition.
          rewrite <- functor_comp.
          apply maponpaths.
          apply (pr12 (fmonoidal_preservesunitstrongly Fm)).
        }
        rewrite functor_id.
        rewrite id_left.
        apply (pr12 (fmonoidal_preservesunitstrongly Gm)).
      - cbn.
        etrans.
        {
          rewrite !assoc'.
          apply maponpaths.
          rewrite assoc.
          apply cancel_postcomposition.
          apply (pr22 (fmonoidal_preservesunitstrongly Gm)).
        }
        rewrite id_left.
        rewrite <- functor_comp.
        etrans.
        {
          apply maponpaths.
          apply (pr22 (fmonoidal_preservesunitstrongly Fm)).
        }
        apply functor_id.

    Definition comp_fmonoidal_stronglaws
      : fmonoidal_stronglaws
          (fmonoidal_preservestensordata (comp_fmonoidal_lax Fm Gm))
          (fmonoidal_preservesunit (comp_fmonoidal_lax Fm Gm)).
    Show proof.
      split.
      - intros x y.
        use make_is_z_isomorphism.
        + exact (comp_fmonoidal_tensor_inv x y).
        + exact (comp_fmonoidal_tensor_inv_laws x y).
      - use make_is_z_isomorphism.
        + exact comp_fmnoidal_unit_inv.
        + exact comp_fmonoidal_unit_inv_laws.

    Definition comp_fmonoidal
      : fmonoidal M O (F G)
      := comp_fmonoidal_lax Fm Gm ,, comp_fmonoidal_stronglaws.
  End CompStrongMonoidal.

  Proposition is_symmetric_monoidal_comp
              {C D E : category}
              {M : monoidal C}
              {N : monoidal D}
              {O : monoidal E}
              {HM : symmetric M}
              {HN : symmetric N}
              {HO : symmetric O}
              {F : C D}
              {G : D E}
              {HF : fmonoidal_lax M N F}
              {HG : fmonoidal_lax N O G}
              (HHF : is_symmetric_monoidal_functor HM HN HF)
              (HHG : is_symmetric_monoidal_functor HN HO HG)
    : is_symmetric_monoidal_functor HM HO (comp_fmonoidal_lax HF HG).
  Show proof.
    intros x y.
    cbn.
    rewrite !assoc.
    etrans.
    {
      apply maponpaths_2.
      apply HHG.
    }
    rewrite !assoc'.
    etrans.
    {
      apply maponpaths.
      rewrite <- functor_comp.
      apply maponpaths.
      apply HHF.
    }
    rewrite functor_comp.
    apply idpath.
End MonoidalFunctors.

7. Monoidal natural transformations
Section MonoidalNaturalTransformations.

  Context {C D : category}
          {M : monoidal C} {N : monoidal D}
          {F G : functor C D}
          (Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax M N G)
          (α : F G).

  Definition is_mon_nat_trans_tensorlaw
    : UU
    := (a a' : C),
       fmonoidal_preservestensordata Fm a a' · α (a _{M} a')
       =
       α a ⊗^{N} α a' · fmonoidal_preservestensordata Gm a a'.

  Definition is_mon_nat_trans_unitlaw : UU
    := fmonoidal_preservesunit Fm · α I_{M} = fmonoidal_preservesunit Gm.

  Definition is_mon_nat_trans : UU := is_mon_nat_trans_tensorlaw × is_mon_nat_trans_unitlaw.

  Lemma isaprop_is_mon_nat_trans : isaprop is_mon_nat_trans.
  Show proof.
    apply isapropdirprod.
    - apply impred; intro a; apply impred; intro a'.
      apply D.
    - apply D.

End MonoidalNaturalTransformations.

Section SomeMonoidalNaturalTransformations.

  Lemma is_mon_nat_trans_identity {C D : category}
    {M : monoidal C} {N : monoidal D}
    {F : functor C D}
    (Fm : fmonoidal_lax M N F) :
    is_mon_nat_trans Fm Fm (nat_trans_id _).
  Show proof.
    split; red; cbn; unfold fmonoidal_preservestensordata, fmonoidal_preservesunit; intros.
    - etrans.
      2: { apply cancel_postcomposition.
           apply pathsinv0, bifunctor_distributes_over_id.
           - cbn in *.
             apply (bifunctor_leftid N).
           - cbn in *.
             apply (bifunctor_rightid N).
      }
      rewrite id_left.
      apply id_right.
    - apply id_right.

  Lemma is_mon_nat_trans_comp {C D : category}
    {M : monoidal C} {N : monoidal D}
    {F G H : functor C D}
    (Fm : fmonoidal_lax M N F)
    (Gm : fmonoidal_lax M N G)
    (Hm : fmonoidal_lax M N H)
    (α : F G) (β : G H)
    :
    is_mon_nat_trans Fm Gm α -> is_mon_nat_trans Gm Hm β ->
    is_mon_nat_trans Fm Hm (nat_trans_comp _ _ _ α β).
  Show proof.
    intros .
    split; red; cbn; unfold fmonoidal_preservestensordata, fmonoidal_preservesunit; intros.
    - etrans.
      2: { apply cancel_postcomposition.
           apply pathsinv0, bifunctor_distributes_over_comp.
           - cbn in *.
             apply (bifunctor_leftcomp N).
           - cbn in *.
             apply (bifunctor_rightcomp N).
           - cbn in *.
             apply (bifunctor_equalwhiskers N).
      }
      rewrite assoc.
      etrans.
      { apply cancel_postcomposition.
        apply (pr1 a a'). }
      repeat rewrite assoc'.
      apply maponpaths.
      apply (pr1 ).
    - rewrite assoc.
      etrans.
      { apply cancel_postcomposition.
        apply (pr2 ). }
      apply (pr2 ).

End SomeMonoidalNaturalTransformations.

Proposition is_mon_nat_trans_prewhisker
            {C₁ C₂ C₃ : category}
            {M₁ : monoidal C₁}
            {M₂ : monoidal C₂}
            {M₃ : monoidal C₃}
            {F : C₁ C₂}
            (HF : fmonoidal_lax M₁ M₂ F)
            {G₁ G₂ : C₂ C₃}
            {HG₁ : fmonoidal_lax M₂ M₃ G₁}
            {HG₂ : fmonoidal_lax M₂ M₃ G₂}
            {τ : G₁ G₂}
            (Hτ : is_mon_nat_trans HG₁ HG₂ τ)
  : is_mon_nat_trans
      (comp_fmonoidal_lax HF HG₁)
      (comp_fmonoidal_lax HF HG₂)
      (pre_whisker F τ).
Show proof.
  split.
  - intros x y ; cbn.
    unfold fmonoidal_preservestensordata.
    assert (aux := pr1 Hτ (F x) (F y)).
    unfold fmonoidal_preservestensordata in aux.
    etrans.
    2: { rewrite assoc.
         apply cancel_postcomposition.
         exact aux. }
    clear aux.
    repeat rewrite assoc'.
    apply maponpaths.
    apply nat_trans_ax.
  - unfold is_mon_nat_trans_unitlaw ; cbn.
    unfold fmonoidal_preservesunit.
    assert (aux := pr2 Hτ).
    red in aux.
    unfold fmonoidal_preservesunit in aux.
    rewrite <- aux.
    repeat rewrite assoc'.
    apply maponpaths.
    apply nat_trans_ax.

Proposition is_mon_nat_trans_postwhisker
            {C₁ C₂ C₃ : category}
            {M₁ : monoidal C₁}
            {M₂ : monoidal C₂}
            {M₃ : monoidal C₃}
            {F₁ F₂ : C₁ C₂}
            {HF₁ : fmonoidal_lax M₁ M₂ F₁}
            {HF₂ : fmonoidal_lax M₁ M₂ F₂}
            {τ : F₁ F₂}
            (Hτ : is_mon_nat_trans HF₁ HF₂ τ)
            {G : C₂ C₃}
            (HG : fmonoidal_lax M₂ M₃ G)
  : is_mon_nat_trans
      (comp_fmonoidal_lax HF₁ HG)
      (comp_fmonoidal_lax HF₂ HG)
      (post_whisker τ G).
Show proof.
  split.
  - intros x y ; cbn.
    unfold fmonoidal_preservestensordata.
    etrans.
      { rewrite assoc'.
        apply maponpaths.
        apply pathsinv0, functor_comp. }
      etrans.
      { do 2 apply maponpaths.
        apply (pr1 Hτ).
      }
      unfold fmonoidal_preservestensordata.
      rewrite functor_comp.
      repeat rewrite assoc.
      apply cancel_postcomposition.
      apply pathsinv0, preservestensor_is_nattrans_full.
      + apply (fmonoidal_preservestensornatleft HG).
      + apply (fmonoidal_preservestensornatright HG).
  - unfold is_mon_nat_trans_unitlaw ; cbn.
    unfold fmonoidal_preservesunit.
    rewrite assoc'.
    apply maponpaths.
    etrans.
    { apply pathsinv0, functor_comp. }
    apply maponpaths.
    apply (pr2 Hτ).

8. Inverses of monoidal natural transformations
Section InverseMonoidalNaturalTransformation.
  Context {C D : category}
          {M : monoidal C} {N : monoidal D}
          {F G : functor C D}
          (Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax M N G)
          (α : F G).

  Lemma is_mon_nat_trans_pointwise_inverse
        (isnziα : is_nat_z_iso α)
    : is_mon_nat_trans Fm Gm α
      ->
      is_mon_nat_trans Gm Fm (nat_z_iso_inv (α,,isnziα)).
  Show proof.
    intro ismnt. split.
    - intros x y.
      cbn.
      unfold fmonoidal_preservestensordata.
      set (aux := (_,, is_z_iso_bifunctor_z_iso N _ _ (isnziα x) (isnziα y)) : z_iso _ _).
      apply pathsinv0, (z_iso_inv_on_right _ _ _ aux).
      rewrite assoc.
      apply (z_iso_inv_on_left _ _ _ _ (_,,isnziα (x _{ M} y))).
      cbn.
      apply (!(pr1 ismnt x y)).
    - cbn.
      apply pathsinv0, (z_iso_inv_on_left _ _ _ _ (_,,isnziα I_{M})).
      apply (!(pr2 ismnt)).
End InverseMonoidalNaturalTransformation.

Local Open Scope moncat.

9. Bundled versions
Definition lax_monoidal_functor
           (V₁ V₂ : monoidal_cat)
  : UU
  := (F : V₁ V₂), fmonoidal_lax V₁ V₂ F.

Coercion lax_monoidal_functor_to_functor
         {V₁ V₂ : monoidal_cat}
         (F : lax_monoidal_functor V₁ V₂)
  : V₁ V₂
  := pr1 F.

Coercion lax_monoidal_functor_to_fmonoidal_lax
         {V₁ V₂ : monoidal_cat}
         (F : lax_monoidal_functor V₁ V₂)
  : fmonoidal_lax V₁ V₂ F
  := pr2 F.

Definition symmetric_lax_monoidal_functor
           (V₁ V₂ : sym_monoidal_cat)
  : UU
  := (F : lax_monoidal_functor V₁ V₂),
     is_symmetric_monoidal_functor (pr2 V₁) (pr2 V₂) (pr2 F).

Coercion symmetric_lax_monoidal_functor_to_lax_monoidal
         {V₁ V₂ : sym_monoidal_cat}
         (F : symmetric_lax_monoidal_functor V₁ V₂)
  : lax_monoidal_functor V₁ V₂
  := pr1 F.

Definition strong_monoidal_functor
           (V₁ V₂ : monoidal_cat)
  : UU
  := (F : V₁ V₂), fmonoidal V₁ V₂ F.

Coercion strong_monoidal_functor_to_lax_monoidal_functor
         {V₁ V₂ : monoidal_cat}
         (F : strong_monoidal_functor V₁ V₂)
  : lax_monoidal_functor V₁ V₂
  := pr1 F ,, pr12 F.

Definition symmetric_strong_monoidal_functor
           (V₁ V₂ : sym_monoidal_cat)
  : UU
  := (F : strong_monoidal_functor V₁ V₂),
     is_symmetric_monoidal_functor (pr2 V₁) (pr2 V₂) (pr2 F).

Coercion symmetric_strong_monoidal_functor_to_strong_monoidal
         {V₁ V₂ : sym_monoidal_cat}
         (F : symmetric_strong_monoidal_functor V₁ V₂)
  : strong_monoidal_functor V₁ V₂
  := pr1 F.

Coercion symmetric_strong_monoidal_functor_to_lax_symmetric
         {V₁ V₂ : sym_monoidal_cat}
         (F : symmetric_strong_monoidal_functor V₁ V₂)
  : symmetric_lax_monoidal_functor V₁ V₂
  := (pr11 F ,, pr121 F) ,, pr2 F.

Definition mon_functor_unit
           {V₁ V₂ : monoidal_cat}
           (F : lax_monoidal_functor V₁ V₂)
  : I_{V₂} --> F (I_{V₁})
  := pr212 F.

Definition mon_functor_tensor
           {V₁ V₂ : monoidal_cat}
           (F : lax_monoidal_functor V₁ V₂)
           (x y : V₁)
  : F x F y --> F(x y)
  := pr112 F x y.

Section MonoidalFunctorAccessors.
  Context {V₁ V₂ : monoidal_cat}
          (F : lax_monoidal_functor V₁ V₂).

  Definition tensor_mon_functor_tensor
             {x₁ x₂ y₁ y₂ : V₁}
             (f : x₁ --> x₂)
             (g : y₁ --> y₂)
    : #F f #⊗ #F g · mon_functor_tensor F x₂ y₂
      =
      mon_functor_tensor F x₁ y₁ · #F (f #⊗ g).
  Show proof.
    unfold monoidal_cat_tensor_mor.
    unfold functoronmorphisms1.
    rewrite !assoc'.
    etrans.
    {
      apply maponpaths.
      apply (fmonoidal_preservestensornatleft (pr2 F)).
    }
    rewrite !assoc.
    etrans.
    {
      apply maponpaths_2.
      apply (fmonoidal_preservestensornatright (pr2 F)).
    }
    rewrite !assoc'.
    apply maponpaths.
    rewrite <- functor_comp.
    apply idpath.

  Definition mon_functor_lassociator
             (x y z : V₁)
    : mon_functor_tensor F x y #⊗ identity (F z)
      · mon_functor_tensor F (x y) z
      · #F (mon_lassociator x y z)
      =
      mon_lassociator (F x) (F y) (F z)
      · identity (F x) #⊗ mon_functor_tensor F y z
      · mon_functor_tensor F x (y z).
  Show proof.
    refine (_ @ fmonoidal_preservesassociativity (pr2 F) x y z @ _).
    - apply maponpaths_2.
      apply maponpaths_2.
      unfold monoidal_cat_tensor_mor.
      unfold functoronmorphisms1.
      refine (_ @ id_right _).
      apply maponpaths.
      apply (bifunctor_leftid V₂).
    - apply maponpaths_2.
      apply maponpaths.
      unfold monoidal_cat_tensor_mor.
      unfold functoronmorphisms1.
      refine (!(id_left _) @ _).
      apply maponpaths_2.
      refine (!_).
      apply (bifunctor_rightid V₂).

  Definition mon_functor_rassociator
             (x y z : V₁)
    : mon_rassociator (F x) (F y) (F z)
      · mon_functor_tensor F x y #⊗ identity (F z)
      · mon_functor_tensor F (x y) z
      =
      identity (F x) #⊗ mon_functor_tensor F y z
      · mon_functor_tensor F x (y z)
      · #F (mon_rassociator x y z).
  Show proof.
    refine (!_).
    etrans.
    {
      apply maponpaths_2.
      refine (!(id_left _) @ _).
      etrans.
      {
        apply maponpaths_2.
        refine (!_).
        apply mon_rassociator_lassociator.
      }
      rewrite !assoc'.
      apply maponpaths.
      rewrite !assoc.
      refine (!_).
      apply mon_functor_lassociator.
    }
    rewrite !assoc'.
    do 2 apply maponpaths.
    refine (_ @ id_right _).
    apply maponpaths.
    refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
    apply maponpaths.
    apply mon_lassociator_rassociator.

  Definition mon_functor_lunitor
             (x : V₁)
    : mon_lunitor (F x)
      =
      mon_functor_unit F #⊗ identity (F x)
      · mon_functor_tensor F (I_{V₁}) x
      · #F (mon_lunitor x).
  Show proof.
    refine (!(fmonoidal_preservesleftunitality (pr2 F) x) @ _).
    do 2 apply maponpaths_2.
    unfold monoidal_cat_tensor_mor.
    unfold functoronmorphisms1.
    refine (!(id_right _) @ _).
    apply maponpaths.
    refine (!_).
    apply (bifunctor_leftid V₂).

  Definition mon_functor_linvunitor
             (x : V₁)
    : #F (mon_linvunitor x)
      =
      mon_linvunitor (F x)
      · mon_functor_unit F #⊗ identity (F x)
      · mon_functor_tensor F (I_{V₁}) x.
  Show proof.
    refine (!(id_left _) @ _).
    etrans.
    {
      apply maponpaths_2.
      refine (!_).
      apply mon_linvunitor_lunitor.
    }
    rewrite !assoc'.
    apply maponpaths.
    etrans.
    {
      apply maponpaths_2.
      apply mon_functor_lunitor.
    }
    rewrite !assoc'.
    apply maponpaths.
    refine (_ @ id_right _).
    apply maponpaths.
    refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
    apply maponpaths.
    apply mon_lunitor_linvunitor.

  Definition mon_functor_runitor
             (x : V₁)
    : mon_runitor (F x)
      =
      identity (F x) #⊗ mon_functor_unit F
      · mon_functor_tensor F x (I_{V₁})
      · #F (mon_runitor x).
  Show proof.
    refine (!(fmonoidal_preservesrightunitality (pr2 F) x) @ _).
    do 2 apply maponpaths_2.
    unfold monoidal_cat_tensor_mor.
    unfold functoronmorphisms1.
    refine (!(id_left _) @ _).
    apply maponpaths_2.
    refine (!_).
    apply (bifunctor_rightid V₂).

  Definition mon_functor_rinvunitor
             (x : V₁)
    : #F (mon_rinvunitor x)
      =
      mon_rinvunitor (F x)
      · identity (F x) #⊗ mon_functor_unit F
      · mon_functor_tensor F x (I_{V₁}).
  Show proof.
    refine (!(id_left _) @ _).
    etrans.
    {
      apply maponpaths_2.
      refine (!_).
      apply mon_rinvunitor_runitor.
    }
    rewrite !assoc'.
    apply maponpaths.
    etrans.
    {
      apply maponpaths_2.
      apply mon_functor_runitor.
    }
    rewrite !assoc'.
    apply maponpaths.
    refine (_ @ id_right _).
    apply maponpaths.
    refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
    apply maponpaths.
    apply mon_runitor_rinvunitor.
End MonoidalFunctorAccessors.

Section StrongMonoidalFunctorAccessors.
  Context {V₁ V₂ : monoidal_cat}
          (F : strong_monoidal_functor V₁ V₂).

  Definition strong_functor_unit_inv
    : F (I_{V₁}) --> I_{V₂}.
  Show proof.

  Definition strong_functor_unit_inv_unit
    : strong_functor_unit_inv · mon_functor_unit F = identity _.
  Show proof.
    apply z_iso_after_z_iso_inv.

  Definition strong_functor_unit_unit_inv
    : mon_functor_unit F · strong_functor_unit_inv = identity _.
  Show proof.

  Definition strong_functor_tensor_inv
             (x y : V₁)
    : F(x y) --> F x F y.
  Show proof.

  Definition strong_functor_tensor_inv_tensor
             (x y : V₁)
    : strong_functor_tensor_inv x y · mon_functor_tensor F x y = identity _.
  Show proof.
    apply z_iso_after_z_iso_inv.

  Definition strong_functor_tensor_tensor_inv
             (x y : V₁)
    : mon_functor_tensor F x y · strong_functor_tensor_inv x y = identity _.
  Show proof.

  Definition tensor_strong_functor_tensor_inv
             {x₁ x₂ y₁ y₂ : V₁}
             (f : x₁ --> x₂)
             (g : y₁ --> y₂)
    : strong_functor_tensor_inv x₁ y₁ · #F f #⊗ #F g
      =
      #F (f #⊗ g) · strong_functor_tensor_inv x₂ y₂.
  Show proof.
    use z_iso_inv_on_right ; cbn.
    rewrite !assoc.
    use z_iso_inv_on_left ; cbn.
    refine (!_).
    apply (tensor_mon_functor_tensor F).
End StrongMonoidalFunctorAccessors.

Proposition symmetric_lax_monoidal_sym_mon_braiding
            {V₁ V₂ : sym_monoidal_cat}
            (F : symmetric_lax_monoidal_functor V₁ V₂)
            (x y : V₁)
  : sym_mon_braiding V₂ (F x) (F y) · mon_functor_tensor F y x
    =
    mon_functor_tensor F x y · #F (sym_mon_braiding V₁ x y).
Show proof.
  exact (pr2 F x y).

10. Builders for the bundled versions
Definition lax_monoidal_functor_laws
           {V₁ V₂ : monoidal_cat}
           (F : V₁ V₂)
           (μ : (x y : V₁), F x F y --> F(x y))
           (η : I_{V₂} --> F(I_{V₁}))
  : UU
  := ( (x₁ x₂ y₁ y₂ : V₁)
        (f : x₁ --> x₂)
        (g : y₁ --> y₂),
      #F f #⊗ #F g · μ x₂ y₂
      =
      μ x₁ y₁ · #F(f #⊗ g))
     ×
     ( (x : V₁),
      η #⊗ identity _ · μ (I_{V₁}) x · #F (mon_lunitor x)
      =
      mon_lunitor (F x))
     ×
     ( (x : V₁),
      identity _ #⊗ η · μ x (I_{V₁}) · #F (mon_runitor x)
      =
      mon_runitor (F x))
     ×
     ( (x y z : V₁),
      (μ x y #⊗ identity _) · μ (x y) z · #F(mon_lassociator x y z)
      =
      mon_lassociator (F x) (F y) (F z) · (identity _ #⊗ μ y z) · μ x (y z)).

Proposition lax_monoidal_functor_laws_to_monoidal_laws
            {V₁ V₂ : monoidal_cat}
            {F : V₁ V₂}
            {μ : (x y : V₁), F x F y --> F(x y)}
            {η : I_{V₂} --> F(I_{V₁})}
            (HF : lax_monoidal_functor_laws F μ η)
  : fmonoidal_laxlaws (μ,, η).
Show proof.
  repeat split.
  - intros x y₁ y₂ g ; cbn.
    refine (_ @ pr1 HF _ _ _ _ (identity _) g @ _).
    + apply maponpaths_2.
      unfold monoidal_cat_tensor_mor, functoronmorphisms1.
      refine (!(id_left _) @ _).
      apply maponpaths_2.
      rewrite functor_id.
      refine (!_).
      apply (bifunctor_rightid (pr2 V₂)).
    + do 2 apply maponpaths.
      unfold monoidal_cat_tensor_mor, functoronmorphisms1.
      refine (_ @ id_left _).
      apply maponpaths_2.
      apply (bifunctor_rightid (pr2 V₁)).
  - intros x₁ x₂ y f ; cbn.
    refine (_ @ pr1 HF _ _ _ _ f (identity _) @ _).
    + apply maponpaths_2.
      unfold monoidal_cat_tensor_mor, functoronmorphisms1.
      refine (!(id_right _) @ _).
      apply maponpaths.
      rewrite functor_id.
      refine (!_).
      apply (bifunctor_leftid (pr2 V₂)).
    + do 2 apply maponpaths.
      unfold monoidal_cat_tensor_mor, functoronmorphisms1.
      refine (_ @ id_right _).
      apply maponpaths.
      apply (bifunctor_leftid (pr2 V₁)).
  - intros x y z ; cbn.
    refine (_ @ pr222 HF x y z @ _).
    + do 2 apply maponpaths_2.
      unfold monoidal_cat_tensor_mor, functoronmorphisms1.
      refine (!(id_right _) @ _).
      apply maponpaths.
      refine (!_).
      apply (bifunctor_leftid (pr2 V₂)).
    + apply maponpaths_2.
      apply maponpaths.
      unfold monoidal_cat_tensor_mor, functoronmorphisms1.
      refine (_ @ id_left _).
      apply maponpaths_2.
      apply (bifunctor_rightid (pr2 V₂)).
  - intros x ; cbn.
    refine (_ @ pr12 HF x).
    do 2 apply maponpaths_2.
    unfold monoidal_cat_tensor_mor, functoronmorphisms1.
    refine (!(id_right _) @ _).
    apply maponpaths.
    refine (!_).
    apply (bifunctor_leftid (pr2 V₂)).
  - intros x ; cbn.
    refine (_ @ pr122 HF x).
    do 2 apply maponpaths_2.
    unfold monoidal_cat_tensor_mor, functoronmorphisms1.
    refine (!(id_left _) @ _).
    apply maponpaths_2.
    refine (!_).
    apply (bifunctor_rightid (pr2 V₂)).

Definition make_lax_monoidal_functor
           {V₁ V₂ : monoidal_cat}
           (F : V₁ V₂)
           (μ : (x y : V₁), F x F y --> F(x y))
           (η : I_{V₂} --> F(I_{V₁}))
           (HF : lax_monoidal_functor_laws F μ η)
  : lax_monoidal_functor V₁ V₂
  := F ,, (μ ,, η) ,, lax_monoidal_functor_laws_to_monoidal_laws HF.

Definition make_strong_monoidal_functor
           {V₁ V₂ : monoidal_cat}
           (F : lax_monoidal_functor V₁ V₂)
           ( : (x y : V₁), is_z_isomorphism (mon_functor_tensor F x y))
           ( : is_z_isomorphism (mon_functor_unit F))
  : strong_monoidal_functor V₁ V₂
  := pr1 F ,, pr2 F ,, ,, .

Definition symmetric_monoidal_functor_laws
           {V₁ V₂ : sym_monoidal_cat}
           (F : lax_monoidal_functor V₁ V₂)
  : UU
  := (x y : V₁),
     sym_mon_braiding V₂ (F x) (F y) · mon_functor_tensor F y x
     =
     mon_functor_tensor F x y · #F(sym_mon_braiding V₁ x y).

Definition make_symmetric_lax_monoidal_functor
           {V₁ V₂ : sym_monoidal_cat}
           (F : lax_monoidal_functor V₁ V₂)
           (HF : symmetric_monoidal_functor_laws F)
  : symmetric_lax_monoidal_functor V₁ V₂
  := F ,, HF.

Definition make_symmetric_strong_monoidal_functor
           {V₁ V₂ : sym_monoidal_cat}
           (F : strong_monoidal_functor V₁ V₂)
           (HF : symmetric_monoidal_functor_laws F)
  : symmetric_strong_monoidal_functor V₁ V₂
  := F ,, HF.