Library UniMath.CategoryTheory.AdditiveFunctors

Additive functors

Contents

  • Definition of additive functors
  • Additive functor preserves BinDirectSums
    • Definition of PreservesBinDirectSums
      • Additive funtor preserves zero.
    • Preserves IdIn1, IdIn2, Unit1, Unit2, and Id of BinDirectSum
    • Preserves BinDirectCoproducts
    • Preserves BinDirectProducts
    • Preserves BinDirectSums
  • If a functor preserves BinDirectSums, then it is additive
    • Preserves unel
    • Commutes with BinOp
    • isAdditiveFunctor
  • The natural additive functor to quotient
  • Additive equivalences

Definition of additive functor

Functor is additive if for any two objects a1 a2 of an additive category A, the map on morphisms A⟦a1, a2⟧ -> B⟦F a1, F a2⟧ is a morphism of abelian groups.

isAdditiveFunctor


  Definition isAdditiveFunctor {A B : CategoryWithAdditiveStructure} (F : functor A B) : UU :=
     (a1 a2 : A), @ismonoidfun (to_abgr a1 a2) (to_abgr (F a1) (F a2)) (# F).

  Definition make_isAdditiveFunctor {A B : CategoryWithAdditiveStructure} (F : functor A B)
             (H : (a1 a2 : A),
                  @ismonoidfun (to_abgr a1 a2) (to_abgr (F a1) (F a2)) (# F)) :
    isAdditiveFunctor F.
  Show proof.
    intros a1 a2.
    exact (H a1 a2).

  Definition make_isAdditiveFunctor' {A B : CategoryWithAdditiveStructure} (F : functor A B)
             (H1 : (a1 a2 : A), (# F (ZeroArrow (to_Zero A) a1 a2)) =
                                  ZeroArrow (to_Zero B) (F a1) (F a2))
             (H2 : (a1 a2 : A) (f g : Aa1, a2), # F (to_binop _ _ f g) =
                                                    to_binop _ _ (# F f) (# F g)) :
    isAdditiveFunctor F.
  Show proof.
    use make_isAdditiveFunctor.
    intros a1 a2.
    split.
    - intros f g. apply (H2 a1 a2 f g).
    - set (tmp := PreAdditive_unel_zero A (to_Zero A) a1 a2).
      unfold to_unel in tmp. rewrite tmp. clear tmp.
      set (tmp := PreAdditive_unel_zero B (to_Zero B) (F a1) (F a2)).
      unfold to_unel in tmp. rewrite tmp. clear tmp.
      apply (H1 a1 a2).

  Lemma isaprop_isAdditiveFunctor {A B : CategoryWithAdditiveStructure} (F : functor A B) :
    isaprop (isAdditiveFunctor F).
  Show proof.
    apply impred_isaprop. intros t.
    apply impred_isaprop. intros t0.
    apply isapropismonoidfun.

Additive functor

Accessor functions

Basics of additive functors


  Lemma AdditiveFunctorUnel {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B)
        (a1 a2 : A) : # F (to_unel a1 a2) = to_unel (F a1) (F a2).
  Show proof.
    unfold to_unel.
    apply (pr2 (pr2 F a1 a2)).

  Lemma AdditiveFunctorZeroArrow {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B)
        (a1 a2 : A) : # F (ZeroArrow (to_Zero A) a1 a2) = ZeroArrow (to_Zero B) (F a1) (F a2).
  Show proof.
    rewrite <- PreAdditive_unel_zero. rewrite <- PreAdditive_unel_zero.
    apply AdditiveFunctorUnel.

  Lemma AdditiveFunctorLinear {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B) {a1 a2 : A}
        (f g : a1 --> a2) : # F (to_binop _ _ f g) = to_binop _ _ (# F f) (# F g).
  Show proof.
    apply (pr1 (pr2 F a1 a2)).

  Lemma AdditiveFunctorInv {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B) {a1 a2 : A} (f : a1 --> a2) :
    # F (to_inv f) = to_inv (# F f).
  Show proof.
    apply (to_lcan _ (# F f)). rewrite <- AdditiveFunctorLinear.
    rewrite rinvax. rewrite AdditiveFunctorUnel. rewrite rinvax.
    apply idpath.

  Definition CompositionIsAdditive {A1 A2 A3 : CategoryWithAdditiveStructure} (F1 : AdditiveFunctor A1 A2)
             (F2 : AdditiveFunctor A2 A3) : isAdditiveFunctor (functor_composite F1 F2).
  Show proof.
    use make_isAdditiveFunctor'.
    - intros a1 a2. cbn. rewrite AdditiveFunctorZeroArrow. use AdditiveFunctorZeroArrow.
    - intros a1 a2 f g. cbn. rewrite AdditiveFunctorLinear. use AdditiveFunctorLinear.

  Definition AdditiveComposite {A1 A2 A3 : CategoryWithAdditiveStructure}(F1 : AdditiveFunctor A1 A2)
             (F2 : AdditiveFunctor A2 A3) : AdditiveFunctor A1 A3 :=
    make_AdditiveFunctor (functor_composite F1 F2) (CompositionIsAdditive F1 F2).

End def_additivefunctor.

Additive functor preserves BinDirectSums

We say that a functor F between additive categories A and B preserves BinDirectSums if for any BinDirectSum (a1 ⊕ a2, in1, in2, pr1, pr2) in A, the data (F(a1 ⊕ a2), F(in1), F(in2), F(pr1), F(pr2)) is a BinDirectSum in B.
Section additivefunctor_preserves_bindirectsums.

  Definition PreservesBinDirectSums {A B : CategoryWithAdditiveStructure} (F : functor A B) : hProp :=
     (a1 a2 : A) (DS : BinDirectSum a1 a2),
    isBinDirectSum
                       (# F (to_In1 DS)) (# F (to_In2 DS))
                       (# F (to_Pr1 DS)) (# F (to_Pr2 DS)).

Additive functor preserves zeros.
  Lemma AdditiveFunctorPreservesBinDirectSums_zero {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B) :
    isZero (F (to_Zero A)).
  Show proof.
    set (isadd0 := AdditiveFunctor_isAdditiveFunctor F (to_Zero A) (to_Zero A)).
    set (unel := to_unel (to_Zero A) (to_Zero A)).
    set (tmp := (pr2 isadd0)). cbn in tmp.
    set (tmp1 := PreAdditive_unel_zero A (to_Zero A) (to_Zero A) (to_Zero A)).
    unfold to_unel in tmp1. rewrite tmp1 in tmp. clear tmp1.
    assert (tmp2 : identity (to_Zero A) = ZeroArrow (to_Zero A) _ _) by apply ArrowsToZero.
    rewrite <- tmp2 in tmp. clear tmp2.
    assert (X : # F (identity (to_Zero A)) = identity (F (to_Zero A))) by apply functor_id.
    set (tmp2 := PreAdditive_unel_zero B (to_Zero B) (F (to_Zero A)) (F (to_Zero A))).
    unfold to_unel in tmp2. rewrite tmp2 in tmp. clear tmp2.
    assert (X0 : z_iso (F (to_Zero A)) (to_Zero B)).
    { exists (ZeroArrowTo (F (to_Zero A))).
      exists (ZeroArrowFrom (F (to_Zero A))).
      split.
      + rewrite <- X. rewrite tmp. apply ZeroArrowEq.
      + apply ArrowsToZero.
    }
    apply (ZIsoToisZero B (to_Zero B) X0).

F preserves IdIn1, IdIn2, IdUnit1, IdUnit2, and Id of BinDirectSum


  Local Lemma AdditiveFunctorPreservesBinDirectSums_idin1 {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B)
        {a1 a2 : A} (DS : BinDirectSum a1 a2) :
    (# F (to_In1 DS)) · (# F (to_Pr1 DS)) = identity _.
  Show proof.
    rewrite <- functor_comp. rewrite (to_IdIn1 DS). apply functor_id.

  Local Lemma AdditiveFunctorPreservesBinDirectSums_idin2 {A B : CategoryWithAdditiveStructure} (F : AdditiveFunctor A B)
        {a1 a2 : A} (DS : BinDirectSum a1 a2) :
    (# F (to_In2 DS)) · (# F (to_Pr2 DS)) = identity _.
  Show proof.
    rewrite <- functor_comp. rewrite (to_IdIn2 DS). apply functor_id.

  Local Lemma AdditiveFunctorPreservesBinDirectSums_unit1 {A B : CategoryWithAdditiveStructure}
        (F : AdditiveFunctor A B) {a1 a2 : A} (DS : BinDirectSum a1 a2) :
    (# F (to_In1 DS)) · (# F (to_Pr2 DS)) = to_unel (F a1) (F a2).
  Show proof.
    rewrite <- functor_comp. rewrite (to_Unel1 DS). apply AdditiveFunctorUnel.

  Local Lemma AdditiveFunctorPreservesBinDirectSums_unit2 {A B : CategoryWithAdditiveStructure}
        (F : AdditiveFunctor A B) {a1 a2 : A} (DS : BinDirectSum a1 a2) :
    (# F (to_In2 DS)) · (# F (to_Pr1 DS)) = to_unel (F a2) (F a1).
  Show proof.
    rewrite <- functor_comp. rewrite (to_Unel2 DS). apply AdditiveFunctorUnel.

  Local Lemma AdditiveFunctorPreservesBinDirectSums_id {A B : CategoryWithAdditiveStructure}
        (F : AdditiveFunctor A B) {a1 a2 : A} (DS : BinDirectSum a1 a2) :
    to_binop _ _
             ((# F (to_Pr1 DS)) · (# F (to_In1 DS)))
             ((# F (to_Pr2 DS)) · (# F (to_In2 DS))) = identity _.
  Show proof.
    rewrite <- functor_comp. rewrite <- functor_comp.
    rewrite <- AdditiveFunctorLinear. rewrite (to_BinOpId DS). apply functor_id.

An additive functor preserves BinDirectSums

Additive criteria

In this section we show that a functor between additive categories which preserves BinDirectSums is additive.

Preserves unel

A functor which preserves binary direct sums preserves zero objects.
  Lemma isAdditiveCriteria_isZero {A B : CategoryWithAdditiveStructure} (F : functor A B)
        (H : PreservesBinDirectSums F) : isZero (F (to_Zero A)).
  Show proof.
    set (DS := to_BinDirectSums A (to_Zero A) (to_Zero A)).
    set (isBDS := H (to_Zero A) (to_Zero A) DS).
    assert (e1 : (# F (to_In1 DS)) = (# F (to_In2 DS))).
    {
      apply maponpaths.
      apply ArrowsFromZero.
    }
    assert (e2 : (# F (to_Pr1 DS)) = (# F (to_Pr2 DS))).
    {
      apply maponpaths.
      apply ArrowsToZero.
    }
    cbn in isBDS.
    rewrite e1 in isBDS. rewrite e2 in isBDS. clear e1 e2.
    set (BDS := make_BinDirectSum _ _ _ _ _ _ _ _ isBDS).
    use make_isZero.
    - intros b.
      use tpair.
      + apply (ZeroArrow (to_Zero B) _ _).
      + cbn. intros t.
        use (pathscomp0 (!(BinDirectSumIn1Commutes B BDS _ t (ZeroArrow (to_Zero B) _ _)))).
        use (pathscomp0 _ (BinDirectSumIn2Commutes B BDS _ t (ZeroArrow (to_Zero B) _ _))).
        cbn. apply cancel_precomposition. apply idpath.
    - intros a.
      use tpair.
      + apply (ZeroArrow (to_Zero B) _ _).
      + cbn. intros t.
        use (pathscomp0 (!(BinDirectSumPr1Commutes B BDS _ t (ZeroArrow (to_Zero B) _ _)))).
        use (pathscomp0 _ (BinDirectSumPr2Commutes B BDS _ t (ZeroArrow (to_Zero B) _ _))).
        cbn. apply cancel_postcomposition. apply idpath.

F preserves unel
  Local Corollary isAdditiveCriteria_preservesUnel {A B : CategoryWithAdditiveStructure} (F : functor A B)
        (H : PreservesBinDirectSums F) (a1 a2 : A) :
    (# F (to_unel a1 a2)) = (to_unel (F a1) (F a2)).
  Show proof.
    set (Z := make_Zero (F (to_Zero A)) (isAdditiveCriteria_isZero F H)).
    rewrite (PreAdditive_unel_zero A (to_Zero A) a1 a2).
    rewrite (PreAdditive_unel_zero B Z (F a1) (F a2)).
    unfold ZeroArrow. rewrite functor_comp. cbn.
    assert (e1 : # F (ZeroArrowTo a1) = @ZeroArrowTo B Z (F a1)).
    {
      apply (ArrowsToZero B Z).
    }
    assert (e2 : # F (ZeroArrowFrom a2) = @ZeroArrowFrom B Z (F a2)).
    {
      apply (ArrowsFromZero B Z).
    }
    rewrite e1. rewrite e2. apply idpath.

Commutes with binop

F commutes with addition of projections from a1 ⊕ a1
  Local Lemma isAdditiveCriteria_isBinopFun_Pr {A B : CategoryWithAdditiveStructure} (F : functor A B)
        (H : PreservesBinDirectSums F) {a1 a2 : A} (DS : BinDirectSum a1 a1):
    # F (to_binop DS a1 (to_Pr1 DS) (to_Pr2 DS)) =
    to_binop (F DS) (F a1) (# F (to_Pr1 DS)) (# F (to_Pr2 DS)).
  Show proof.
    set (isBDS := H a1 a1 DS).
    set (BDS := make_BinDirectSum _ _ _ _ _ _ _ _ isBDS).
    use (FromBinDirectSumsEq B BDS); cbn.
    - rewrite <- functor_comp.
      rewrite to_premor_linear'.
      rewrite (to_IdIn1 DS). rewrite (to_Unel1 DS).
      rewrite to_runax'. rewrite functor_id.
      rewrite to_premor_linear'.
      rewrite <- functor_comp. rewrite <- functor_comp.
      rewrite (to_IdIn1 DS). rewrite (to_Unel1 DS).
      rewrite functor_id. rewrite (isAdditiveCriteria_preservesUnel _ H).
      rewrite to_runax'. apply idpath.
    - rewrite <- functor_comp.
      rewrite to_premor_linear'.
      rewrite (to_Unel2 DS). rewrite (to_IdIn2 DS). rewrite to_lunax'. rewrite functor_id.
      rewrite to_premor_linear'.
      rewrite <- functor_comp. rewrite <- functor_comp.
      rewrite (to_Unel2 DS). rewrite (to_IdIn2 DS).
      rewrite (isAdditiveCriteria_preservesUnel _ H). rewrite functor_id. rewrite to_lunax'.
      apply idpath.

  Local Lemma isAdditiveCriteria_BinOp_eq {A B : CategoryWithAdditiveStructure} (F : functor A B)
        (H : PreservesBinDirectSums F) {a1 a2 : A} (f g : Aa1, a2)
        (DS := to_BinDirectSums A a2 a2) :
    to_binop a1 a2 f g = (to_binop a1 DS (f · (to_In1 DS)) (g · (to_In2 DS)))
                           · (to_binop DS a2 (to_Pr1 DS) (to_Pr2 DS)).
  Show proof.
    set (isBDS := H a2 a2 DS).
    set (BDS := make_BinDirectSum _ _ _ _ _ _ _ _ isBDS).
    rewrite to_premor_linear'. rewrite to_postmor_linear'.
    rewrite <- assoc. rewrite <- assoc.
    rewrite (to_IdIn1 DS). rewrite (to_Unel2 DS).
    rewrite id_right. rewrite to_premor_unel'. rewrite to_runax'.
    rewrite to_postmor_linear'. rewrite <- assoc. rewrite <- assoc.
    rewrite (to_Unel1 DS). rewrite (to_IdIn2 DS).
    rewrite id_right. rewrite to_premor_unel'. rewrite to_lunax'.
    apply idpath.

F commutes with addition of morphisms
  Local Lemma isAdditiveCriteria_BinOp {A B : CategoryWithAdditiveStructure} (F : functor A B)
        (H : PreservesBinDirectSums F) {a1 a2 : A} (f g : Aa1, a2) :
    # F (to_binop a1 a2 f g) = to_binop (F a1) (F a2) (# F f) (# F g).
  Show proof.
    set (DS := to_BinDirectSums A a2 a2).
    set (isBDS := H a2 a2 DS).
    set (BDS := make_BinDirectSum _ _ _ _ _ _ _ _ isBDS).
    rewrite (isAdditiveCriteria_BinOp_eq F H f g). rewrite functor_comp.
    rewrite (@isAdditiveCriteria_isBinopFun_Pr A B F H a2 DS).
    rewrite to_premor_linear'.
    rewrite <- functor_comp. rewrite to_postmor_linear'.
    rewrite <- assoc. rewrite <- assoc.
    fold DS. rewrite (to_IdIn1 DS). rewrite (to_Unel2 DS).
    rewrite id_right. rewrite to_premor_unel'. rewrite to_runax'.
    rewrite <- functor_comp. rewrite to_postmor_linear'.
    rewrite <- assoc. rewrite <- assoc.
    rewrite (to_IdIn2 DS). rewrite (to_Unel1 DS).
    rewrite id_right. rewrite to_premor_unel'. rewrite to_lunax'.
    apply idpath.

  Lemma isAdditiveCriteria {A B : CategoryWithAdditiveStructure} (F : functor A B) (H : PreservesBinDirectSums F) :
    isAdditiveFunctor F.
  Show proof.
    use make_isAdditiveFunctor.
    intros a1 a2.
    split.
    - intros f g. cbn.
      apply (isAdditiveCriteria_BinOp F H f g).
    - set (tmp := isAdditiveCriteria_preservesUnel F H a1 a2). unfold to_unel in tmp.
      apply tmp.

  Definition AdditiveFunctorCriteria {A B : CategoryWithAdditiveStructure} (F : functor A B)
             (H : PreservesBinDirectSums F) : AdditiveFunctor A B.
  Show proof.
    use make_AdditiveFunctor.
    - exact F.
    - exact (isAdditiveCriteria F H).

End additivefunctor_criteria.

The functor QuotcategoryFunctor is additive

Section def_additive_quot_functor.

  Variable A : CategoryWithAdditiveStructure.
  Variable PAS : PreAdditiveSubabgrs A.
  Variable PAC : PreAdditiveComps A PAS.

  Local Lemma QuotcategoryAdditiveFunctor_isAdditiveFunctor :
    @isAdditiveFunctor A (Quotcategory_Additive A PAS PAC)
                       (QuotcategoryFunctor (Additive_PreAdditive A) PAS PAC).
  Show proof.
    use make_isAdditiveFunctor.
    intros X Y.
    split.
    - intros f g. apply idpath.
    - apply idpath.

  Definition QuotcategoryAdditiveFunctor :
    AdditiveFunctor A (Quotcategory_Additive A PAS PAC).
  Show proof.

End def_additive_quot_functor.

Equivalences of additive categories

Section def_additive_equivalence.

  Definition AddEquiv (A1 A2 : CategoryWithAdditiveStructure) : UU :=
     D : ( F : (AdditiveFunctor A1 A2 × AdditiveFunctor A2 A1),
                 are_adjoints (dirprod_pr1 F) (dirprod_pr2 F)),
          ( a : A1, is_z_isomorphism (unit_from_left_adjoint (pr2 D) a))
            × ( b : A2, is_z_isomorphism (counit_from_left_adjoint (pr2 D) b)).

  Definition make_AddEquiv {A1 A2 : CategoryWithAdditiveStructure} (F : AdditiveFunctor A1 A2)
             (G : AdditiveFunctor A2 A1) (H : are_adjoints F G)
             (H1 : a : A1, is_z_isomorphism (unit_from_left_adjoint H a))
             (H2 : b : A2, is_z_isomorphism (counit_from_left_adjoint H b)) :
    AddEquiv A1 A2 := (((F,,G),,H),,(H1,,H2)).

Accessor functions
  Definition AddEquiv1 {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) : AdditiveFunctor A1 A2 :=
    dirprod_pr1 (pr1 (pr1 AE)).

  Definition AddEquiv2 {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) : AdditiveFunctor A2 A1 :=
    dirprod_pr2 (pr1 (pr1 AE)).

  Definition AddEquiv_are_adjoints {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
    are_adjoints (AddEquiv1 AE) (AddEquiv2 AE) := pr2 (pr1 AE).
  Coercion AddEquiv_are_adjoints : AddEquiv >-> are_adjoints.

  Definition AddEquivUnit {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
    nat_trans (functor_identity A1) (functor_composite (AddEquiv1 AE) (AddEquiv2 AE)) :=
    unit_from_left_adjoint AE.

  Definition AddEquivCounit {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
    nat_trans (functor_composite (AddEquiv2 AE) (AddEquiv1 AE)) (functor_identity A2) :=
    counit_from_left_adjoint AE.

  Definition AddEquivUnitInvMor {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (X : A1) :
    A1⟦(AddEquiv2 AE (AddEquiv1 AE X)), X := pr1 ((dirprod_pr1 (pr2 AE)) X).

  Definition AddEquivUnitInvMor_is_iso_with_inv_data {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2)
             (X : A1) : is_z_isomorphism (unit_from_left_adjoint AE X) :=
    ((dirprod_pr1 (pr2 AE)) X).

  Definition AddEquivUnitInvMor_is_inverse_in_precat {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2)
             (X : A1) :
    is_inverse_in_precat (unit_from_left_adjoint AE X) (AddEquivUnitInvMor AE X) :=
    pr2 ((dirprod_pr1 (pr2 AE)) X).

  Definition AddEquivCounitInvMor {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (X : A2) :
    A2X, (AddEquiv1 AE (AddEquiv2 AE X))⟧ := pr1 ((dirprod_pr2 (pr2 AE)) X).

  Definition AddEquivCounitInvMor_is_iso_with_inv_data {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2)
             (X : A2) : is_z_isomorphism (counit_from_left_adjoint AE X) :=
    ((dirprod_pr2 (pr2 AE)) X).

  Definition AddEquivCounitInvMor_is_inverse_in_precat {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2)
             (X : A2) :
    is_inverse_in_precat (counit_from_left_adjoint AE X) (AddEquivCounitInvMor AE X) :=
    pr2 ((dirprod_pr2 (pr2 AE)) X).

  Definition AddEquivUnitIso {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (X : A1) :
    z_iso X (AddEquiv2 AE (AddEquiv1 AE X)).
  Show proof.
    use make_z_iso.
    - exact (AddEquivUnit AE X).
    - exact (AddEquivUnitInvMor AE X).
    - exact (AddEquivUnitInvMor_is_inverse_in_precat AE X).

  Definition AddEquivCounitIso {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (X : A2) :
    z_iso (AddEquiv1 AE (AddEquiv2 AE X)) X.
  Show proof.
    use make_z_iso.
    - exact (AddEquivCounit AE X).
    - exact (AddEquivCounitInvMor AE X).
    - exact (AddEquivCounitInvMor_is_inverse_in_precat AE X).

  Definition AddEquivLeftTriangle {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
     (a : ob A1), # (AddEquiv1 AE) (AddEquivUnitIso AE a)
                     · AddEquivCounitIso AE (AddEquiv1 AE a) =
                   identity (AddEquiv1 AE a) := triangle_id_left_ad AE.

  Definition AddEquivRightTriangle {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
     (b : ob A2), (AddEquivUnitIso AE (AddEquiv2 AE b))
                     · # (AddEquiv2 AE) (AddEquivCounitIso AE b) =
                   identity (AddEquiv2 AE b) := triangle_id_right_ad AE.

  Definition AddEquivUnitComm {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
     (x x' : ob A1) (f : x --> x'),
    f · (AddEquivUnitIso AE x') =
    (AddEquivUnitIso AE x) · # (functor_composite (AddEquiv1 AE) (AddEquiv2 AE)) f :=
    nat_trans_ax (AddEquivUnit AE).

  Definition AddEquivCounitComm {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) :
     (x x' : A2) (f : x --> x'),
    # (functor_composite (AddEquiv2 AE) (AddEquiv1 AE)) f · (AddEquivCounitIso AE x') =
    (AddEquivCounitIso AE x) · f := nat_trans_ax (AddEquivCounit AE).

  Lemma AddEquivUnitMorComm {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) {x x' : ob A1} (f : x --> x') :
    f = (AddEquivUnitIso AE x)
          · (# (functor_composite (AddEquiv1 AE) (AddEquiv2 AE)) f)
          · (inv_from_z_iso (AddEquivUnitIso AE x')).
  Show proof.
    use (post_comp_with_z_iso_is_inj (AddEquivUnitIso AE x')).
    use (pathscomp0 (AddEquivUnitComm AE _ _ f)).
    rewrite <- assoc.
    set (tmp := is_inverse_in_precat2 (AddEquivUnitIso AE x')). cbn in tmp. cbn.
    rewrite tmp. clear tmp. rewrite id_right. apply idpath.

  Lemma AddEquivCounitMorComm {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) {x x' : ob A2} (f : x --> x') :
    f = (inv_from_z_iso (AddEquivCounitIso AE x))
          · (# (functor_composite (AddEquiv2 AE) (AddEquiv1 AE)) f)
          · (AddEquivCounitIso AE x').
  Show proof.
    use (pre_comp_with_z_iso_is_inj (AddEquivCounitIso AE x)).
    use (pathscomp0 (! AddEquivCounitComm AE _ _ f)).
    rewrite assoc. rewrite assoc.
    set (tmp := is_inverse_in_precat1 (AddEquivCounitIso AE x)). rewrite tmp.
    rewrite id_left. apply idpath.

  Definition AddEquivUnitInv {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) {x x' : ob A1} (f : x --> x') :
    inv_from_z_iso (AddEquivUnitIso AE x) · f =
    # (functor_composite (AddEquiv1 AE) (AddEquiv2 AE)) f
      · inv_from_z_iso (AddEquivUnitIso AE x').
  Show proof.
    use (pre_comp_with_z_iso_is_inj (AddEquivUnitIso AE x)). rewrite assoc.
    rewrite (is_inverse_in_precat1 (AddEquivUnitIso AE x)). rewrite id_left.
    use (post_comp_with_z_iso_is_inj (AddEquivUnitIso AE x')).
    rewrite AddEquivUnitComm. rewrite <- assoc. apply cancel_precomposition. cbn.
    rewrite <- assoc.
    set (tmp := is_inverse_in_precat2 (AddEquivUnitIso AE x')). cbn in tmp. cbn. rewrite tmp.
    rewrite id_right. apply idpath.

  Definition AddEquivCounitInv {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) {x x' : ob A2}
             (f : x --> x') :
    (inv_from_z_iso (AddEquivCounitIso AE x))
      · # (functor_composite (AddEquiv2 AE) (AddEquiv1 AE)) f =
    f · inv_from_z_iso (AddEquivCounitIso AE x').
  Show proof.
    use (pre_comp_with_z_iso_is_inj (AddEquivCounitIso AE x)). rewrite assoc.
    rewrite (is_inverse_in_precat1 (AddEquivCounitIso AE x)). rewrite id_left.
    use (post_comp_with_z_iso_is_inj (AddEquivCounitIso AE x')).
    use (pathscomp0 (AddEquivCounitComm AE _ _ f)). rewrite <- assoc.
    apply cancel_precomposition. cbn.
    rewrite <- assoc.
    set (tmp := is_inverse_in_precat2 (AddEquivCounitIso AE x')). cbn in tmp. cbn. rewrite tmp.
    rewrite id_right. apply idpath.

  Lemma AddEquivCounitUnit {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (x : A1) :
    inv_from_z_iso (AddEquivCounitIso AE (AddEquiv1 AE x)) =
    # (AddEquiv1 AE) (AddEquivUnitIso AE x).
  Show proof.
    use (post_comp_with_z_iso_is_inj (AddEquivCounitIso AE (AddEquiv1 AE x))).
    apply pathsinv0. rewrite (is_inverse_in_precat2 (AddEquivCounitIso AE ((AddEquiv1 AE) x))).
    exact (AddEquivLeftTriangle AE x).

  Lemma AddEquivCounitUnit' {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (x : A1) :
    ((AddEquivCounitIso AE (AddEquiv1 AE x)) : A2_, _) =
    # (AddEquiv1 AE) (inv_from_z_iso (AddEquivUnitIso AE x)).
  Show proof.
    use (post_comp_with_z_iso_inv_is_inj (AddEquivCounitIso AE (AddEquiv1 AE x))).
    apply pathsinv0. rewrite (is_inverse_in_precat1 (AddEquivCounitIso AE ((AddEquiv1 AE) x))).
    rewrite AddEquivCounitUnit. rewrite <- functor_comp.
    rewrite (is_inverse_in_precat2 (AddEquivUnitIso AE x)). apply functor_id.

  Lemma AddEquivUnitCounit {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (x : A2) :
    inv_from_z_iso (AddEquivUnitIso AE (AddEquiv2 AE x)) =
    # (AddEquiv2 AE) (AddEquivCounitIso AE x).
  Show proof.
    use (pre_comp_with_z_iso_is_inj (AddEquivUnitIso AE (AddEquiv2 AE x))).
    apply pathsinv0. rewrite (is_inverse_in_precat1 (AddEquivUnitIso AE ((AddEquiv2 AE) x))).
    exact (AddEquivRightTriangle AE x).

  Lemma AddEquivUnitCounit' {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) (x : A2) :
    ((AddEquivUnitIso AE (AddEquiv2 AE x)) : A1_, _) =
    # (AddEquiv2 AE) (inv_from_z_iso (AddEquivCounitIso AE x)).
  Show proof.
    use (pre_comp_with_z_iso_inv_is_inj (AddEquivUnitIso AE (AddEquiv2 AE x))).
    apply pathsinv0. rewrite (is_inverse_in_precat2 (AddEquivUnitIso AE ((AddEquiv2 AE) x))).
    rewrite AddEquivUnitCounit. rewrite <- functor_comp.
    rewrite (is_inverse_in_precat1 (AddEquivCounitIso AE x)). apply functor_id.

  Lemma AddEquiv1Inj {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) {x y : A1} (f g : x --> y)
        (H : # (AddEquiv1 AE) f = # (AddEquiv1 AE) g) : f = g.
  Show proof.
    apply (maponpaths (# (AddEquiv2 AE))) in H.
    use (post_comp_with_z_iso_is_inj (AddEquivUnitIso AE y)).
    use (pathscomp0 (AddEquivUnitComm AE _ _ f)).
    use (pathscomp0 _ (! (AddEquivUnitComm AE _ _ g))).
    exact (maponpaths (λ gg : _, (AddEquivUnit AE) x · gg) H).

  Lemma AddEquiv2Inj {A1 A2 : CategoryWithAdditiveStructure} (AE : AddEquiv A1 A2) {x y : A2} (f g : x --> y)
        (H : # (AddEquiv2 AE) f = # (AddEquiv2 AE) g) : f = g.
  Show proof.
    apply (maponpaths (# (AddEquiv1 AE))) in H.
    use (pre_comp_with_z_iso_is_inj (AddEquivCounitIso AE x)).
    use (pathscomp0 (! AddEquivCounitComm AE _ _ f)).
    use (pathscomp0 _ (AddEquivCounitComm AE _ _ g)).
    exact (maponpaths (λ gg : _, gg · (AddEquivCounit AE) y) H).

End def_additive_equivalence.