Library UniMath.CategoryTheory.DisplayedCats.Univalence
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Local Open Scope cat.
Local Open Scope mor_disp.
Section Univalent_Categories.
Definition is_univalent_disp {C} (D : disp_cat C)
:= ∏ x x' (e : x = x') (xx : D x) (xx' : D x'),
isweq (λ ee, @idtoiso_disp _ _ _ _ e xx xx' ee).
Definition isaprop_is_univalent_disp
{C : category}
(D : disp_cat C)
: isaprop (is_univalent_disp D).
Show proof.
Definition is_univalent_in_fibers {C} (D : disp_cat C) : UU
:= ∏ x (xx xx' : D x), isweq (fun e : xx = xx' => idtoiso_fiber_disp e).
Lemma is_univalent_disp_from_fibers {C} {D : disp_cat C}
: is_univalent_in_fibers D
-> is_univalent_disp D.
Show proof.
Definition is_univalent_in_fibers_from_univalent_disp {C} (D : disp_cat C)
: is_univalent_disp D -> is_univalent_in_fibers D.
Show proof.
Lemma univalent_disp_cat_has_groupoid_obs {C} (D : disp_cat C)
(is_u : is_univalent_disp D) : ∏ c, isofhlevel 3 (D c).
Show proof.
Definition disp_univalent_category C
:= ∑ D : disp_cat C, is_univalent_disp D.
Definition make_disp_univalent_category
{C} {D : disp_cat C} (H : is_univalent_disp D)
: disp_univalent_category C
:= (D,,H).
Definition disp_cat_of_disp_univalent_cat {C} (D : disp_univalent_category C)
: disp_cat C
:= pr1 D.
Coercion disp_cat_of_disp_univalent_cat : disp_univalent_category >-> disp_cat.
Definition disp_univalent_category_is_univalent_disp {C} (D : disp_univalent_category C)
: is_univalent_disp D
:= pr2 D.
Coercion disp_univalent_category_is_univalent_disp : disp_univalent_category >-> is_univalent_disp.
Definition isotoid_disp
{C} {D : disp_cat C} (D_cat : is_univalent_disp D)
{c c' : C} (e : c = c') {d : D c} {d'} (i : z_iso_disp (idtoiso e) d d')
: transportf _ e d = d'.
Show proof.
Definition idtoiso_isotoid_disp
{C} {D : disp_cat C} (D_cat : is_univalent_disp D)
{c c' : C} (e : c = c') {d : D c} {d'} (i : z_iso_disp (idtoiso e) d d')
: idtoiso_disp e (isotoid_disp D_cat e i) = i.
Show proof.
Definition isotoid_idtoiso_disp
{C} {D : disp_cat C} (D_cat : is_univalent_disp D)
{c c' : C} (e : c = c') {d : D c} {d'} (ee : transportf _ e d = d')
: isotoid_disp D_cat e (idtoiso_disp e ee) = ee.
Show proof.
End Univalent_Categories.
Definition is_univalent_disp {C} (D : disp_cat C)
:= ∏ x x' (e : x = x') (xx : D x) (xx' : D x'),
isweq (λ ee, @idtoiso_disp _ _ _ _ e xx xx' ee).
Definition isaprop_is_univalent_disp
{C : category}
(D : disp_cat C)
: isaprop (is_univalent_disp D).
Show proof.
Definition is_univalent_in_fibers {C} (D : disp_cat C) : UU
:= ∏ x (xx xx' : D x), isweq (fun e : xx = xx' => idtoiso_fiber_disp e).
Lemma is_univalent_disp_from_fibers {C} {D : disp_cat C}
: is_univalent_in_fibers D
-> is_univalent_disp D.
Show proof.
intros H x x' e. destruct e. apply H.
Definition is_univalent_in_fibers_from_univalent_disp {C} (D : disp_cat C)
: is_univalent_disp D -> is_univalent_in_fibers D.
Show proof.
unfold is_univalent_disp , is_univalent_in_fibers.
intros H x xx xx'.
specialize (H x x (idpath _ ) xx xx').
apply H.
intros H x xx xx'.
specialize (H x x (idpath _ ) xx xx').
apply H.
Lemma univalent_disp_cat_has_groupoid_obs {C} (D : disp_cat C)
(is_u : is_univalent_disp D) : ∏ c, isofhlevel 3 (D c).
Show proof.
intro c.
change (isofhlevel 3 (D c)) with
(∏ a b : D c, isofhlevel 2 (a = b)).
intros xx xx'.
set (XR := is_univalent_in_fibers_from_univalent_disp _ is_u).
apply (isofhlevelweqb _ (make_weq _ (XR _ xx xx'))).
apply isaset_z_iso_disp.
change (isofhlevel 3 (D c)) with
(∏ a b : D c, isofhlevel 2 (a = b)).
intros xx xx'.
set (XR := is_univalent_in_fibers_from_univalent_disp _ is_u).
apply (isofhlevelweqb _ (make_weq _ (XR _ xx xx'))).
apply isaset_z_iso_disp.
Definition disp_univalent_category C
:= ∑ D : disp_cat C, is_univalent_disp D.
Definition make_disp_univalent_category
{C} {D : disp_cat C} (H : is_univalent_disp D)
: disp_univalent_category C
:= (D,,H).
Definition disp_cat_of_disp_univalent_cat {C} (D : disp_univalent_category C)
: disp_cat C
:= pr1 D.
Coercion disp_cat_of_disp_univalent_cat : disp_univalent_category >-> disp_cat.
Definition disp_univalent_category_is_univalent_disp {C} (D : disp_univalent_category C)
: is_univalent_disp D
:= pr2 D.
Coercion disp_univalent_category_is_univalent_disp : disp_univalent_category >-> is_univalent_disp.
Definition isotoid_disp
{C} {D : disp_cat C} (D_cat : is_univalent_disp D)
{c c' : C} (e : c = c') {d : D c} {d'} (i : z_iso_disp (idtoiso e) d d')
: transportf _ e d = d'.
Show proof.
Definition idtoiso_isotoid_disp
{C} {D : disp_cat C} (D_cat : is_univalent_disp D)
{c c' : C} (e : c = c') {d : D c} {d'} (i : z_iso_disp (idtoiso e) d d')
: idtoiso_disp e (isotoid_disp D_cat e i) = i.
Show proof.
Definition isotoid_idtoiso_disp
{C} {D : disp_cat C} (D_cat : is_univalent_disp D)
{c c' : C} (e : c = c') {d : D c} {d'} (ee : transportf _ e d = d')
: isotoid_disp D_cat e (idtoiso_disp e ee) = ee.
Show proof.
End Univalent_Categories.