Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedBinaryCoproducts
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.EnrichedCats.Enrichment.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Import MonoidalNotations.
Local Open Scope cat.
Local Open Scope moncat.
Section EnrichedCoproducts.
Context {V : monoidal_cat}
{C : category}
(E : enrichment C V)
(x y : C).
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.EnrichedCats.Enrichment.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Import MonoidalNotations.
Local Open Scope cat.
Local Open Scope moncat.
Section EnrichedCoproducts.
Context {V : monoidal_cat}
{C : category}
(E : enrichment C V)
(x y : C).
1. Cocones of enriched coproducts
Definition enriched_binary_coprod_cocone
: UU
:= ∑ (a : C),
I_{V} --> E ⦃ x , a ⦄
×
I_{V} --> E ⦃ y , a ⦄.
Coercion ob_enriched_binary_coprod_cocone
(a : enriched_binary_coprod_cocone)
: C
:= pr1 a.
Definition enriched_coprod_cocone_in1
(a : enriched_binary_coprod_cocone)
: x --> a
:= enriched_to_arr E (pr12 a).
Definition enriched_coprod_cocone_in2
(a : enriched_binary_coprod_cocone)
: y --> a
:= enriched_to_arr E (pr22 a).
Definition make_enriched_binary_coprod_cocone
(a : C)
(p₁ : I_{V} --> E ⦃ x , a ⦄)
(p₂ : I_{V} --> E ⦃ y , a ⦄)
: enriched_binary_coprod_cocone
:= a ,, p₁ ,, p₂.
: UU
:= ∑ (a : C),
I_{V} --> E ⦃ x , a ⦄
×
I_{V} --> E ⦃ y , a ⦄.
Coercion ob_enriched_binary_coprod_cocone
(a : enriched_binary_coprod_cocone)
: C
:= pr1 a.
Definition enriched_coprod_cocone_in1
(a : enriched_binary_coprod_cocone)
: x --> a
:= enriched_to_arr E (pr12 a).
Definition enriched_coprod_cocone_in2
(a : enriched_binary_coprod_cocone)
: y --> a
:= enriched_to_arr E (pr22 a).
Definition make_enriched_binary_coprod_cocone
(a : C)
(p₁ : I_{V} --> E ⦃ x , a ⦄)
(p₂ : I_{V} --> E ⦃ y , a ⦄)
: enriched_binary_coprod_cocone
:= a ,, p₁ ,, p₂.
2. Binary products in an enriched category
Definition is_binary_coprod_enriched
(a : enriched_binary_coprod_cocone)
: UU
:= ∏ (w : C),
isBinProduct
V
(E ⦃ x , w ⦄)
(E ⦃ y , w ⦄)
(E ⦃ a , w ⦄)
(precomp_arr E w (enriched_coprod_cocone_in1 a))
(precomp_arr E w (enriched_coprod_cocone_in2 a)).
Definition is_binary_coprod_enriched_to_BinProduct
{a : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(w : C)
: BinProduct
V
(E ⦃ x , w ⦄)
(E ⦃ y , w ⦄).
Show proof.
Definition binary_coprod_enriched
: UU
:= ∑ (a : enriched_binary_coprod_cocone),
is_binary_coprod_enriched a.
Coercion cone_of_binary_coprod_enriched
(a : binary_coprod_enriched)
: enriched_binary_coprod_cocone
:= pr1 a.
Coercion binary_coprod_enriched_is_coprod
(a : binary_coprod_enriched)
: is_binary_coprod_enriched a
:= pr2 a.
(a : enriched_binary_coprod_cocone)
: UU
:= ∏ (w : C),
isBinProduct
V
(E ⦃ x , w ⦄)
(E ⦃ y , w ⦄)
(E ⦃ a , w ⦄)
(precomp_arr E w (enriched_coprod_cocone_in1 a))
(precomp_arr E w (enriched_coprod_cocone_in2 a)).
Definition is_binary_coprod_enriched_to_BinProduct
{a : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(w : C)
: BinProduct
V
(E ⦃ x , w ⦄)
(E ⦃ y , w ⦄).
Show proof.
use make_BinProduct.
- exact (E ⦃ a , w ⦄).
- exact (precomp_arr E w (enriched_coprod_cocone_in1 a)).
- exact (precomp_arr E w (enriched_coprod_cocone_in2 a)).
- exact (Ha w).
- exact (E ⦃ a , w ⦄).
- exact (precomp_arr E w (enriched_coprod_cocone_in1 a)).
- exact (precomp_arr E w (enriched_coprod_cocone_in2 a)).
- exact (Ha w).
Definition binary_coprod_enriched
: UU
:= ∑ (a : enriched_binary_coprod_cocone),
is_binary_coprod_enriched a.
Coercion cone_of_binary_coprod_enriched
(a : binary_coprod_enriched)
: enriched_binary_coprod_cocone
:= pr1 a.
Coercion binary_coprod_enriched_is_coprod
(a : binary_coprod_enriched)
: is_binary_coprod_enriched a
:= pr2 a.
3. Being a binary coproduct is a proposition
Proposition isaprop_is_binary_coprod_enriched
(a : enriched_binary_coprod_cocone)
: isaprop (is_binary_coprod_enriched a).
Show proof.
(a : enriched_binary_coprod_cocone)
: isaprop (is_binary_coprod_enriched a).
Show proof.
4. Binary products in the underlying category
Section InUnderlying.
Context {a : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a).
Definition is_binary_coprod_enriched_arrow
{w : C}
(f : x --> w)
(g : y --> w)
: a --> w.
Show proof.
Proposition is_binary_coprod_enriched_arrow_in1
{w : C}
(f : x --> w)
(g : y --> w)
: enriched_coprod_cocone_in1 a · is_binary_coprod_enriched_arrow f g
=
f.
Show proof.
Proposition is_binary_coprod_enriched_arrow_in2
{w : C}
(f : x --> w)
(g : y --> w)
: enriched_coprod_cocone_in2 a · is_binary_coprod_enriched_arrow f g
=
g.
Show proof.
Proposition is_binary_coprod_enriched_arrow_eq
{w : C}
{f g : a --> w}
(q₁ : enriched_coprod_cocone_in1 a · f = enriched_coprod_cocone_in1 a · g)
(q₂ : enriched_coprod_cocone_in2 a · f = enriched_coprod_cocone_in2 a · g)
: f = g.
Show proof.
Definition underlying_BinCoproduct
: BinCoproduct x y.
Show proof.
Context {a : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a).
Definition is_binary_coprod_enriched_arrow
{w : C}
(f : x --> w)
(g : y --> w)
: a --> w.
Show proof.
refine (enriched_to_arr E _).
use (BinProductArrow _ (is_binary_coprod_enriched_to_BinProduct Ha w)).
- exact (enriched_from_arr E f).
- exact (enriched_from_arr E g).
use (BinProductArrow _ (is_binary_coprod_enriched_to_BinProduct Ha w)).
- exact (enriched_from_arr E f).
- exact (enriched_from_arr E g).
Proposition is_binary_coprod_enriched_arrow_in1
{w : C}
(f : x --> w)
(g : y --> w)
: enriched_coprod_cocone_in1 a · is_binary_coprod_enriched_arrow f g
=
f.
Show proof.
unfold is_binary_coprod_enriched_arrow, enriched_coprod_cocone_in1.
use (invmaponpathsweq (make_weq _ (isweq_enriched_from_arr E _ _))) ; cbn.
refine (_ @ BinProductPr1Commutes
_ _ _
(is_binary_coprod_enriched_to_BinProduct Ha w)
_
(enriched_from_arr E f)
(enriched_from_arr E g)).
cbn.
unfold precomp_arr, enriched_coprod_cocone_in1.
rewrite enriched_from_arr_comp.
rewrite !assoc.
apply maponpaths_2.
rewrite !enriched_from_to_arr.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite <- tensor_split'.
apply idpath.
use (invmaponpathsweq (make_weq _ (isweq_enriched_from_arr E _ _))) ; cbn.
refine (_ @ BinProductPr1Commutes
_ _ _
(is_binary_coprod_enriched_to_BinProduct Ha w)
_
(enriched_from_arr E f)
(enriched_from_arr E g)).
cbn.
unfold precomp_arr, enriched_coprod_cocone_in1.
rewrite enriched_from_arr_comp.
rewrite !assoc.
apply maponpaths_2.
rewrite !enriched_from_to_arr.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite <- tensor_split'.
apply idpath.
Proposition is_binary_coprod_enriched_arrow_in2
{w : C}
(f : x --> w)
(g : y --> w)
: enriched_coprod_cocone_in2 a · is_binary_coprod_enriched_arrow f g
=
g.
Show proof.
unfold is_binary_coprod_enriched_arrow, enriched_coprod_cocone_in2.
use (invmaponpathsweq (make_weq _ (isweq_enriched_from_arr E _ _))) ; cbn.
refine (_ @ BinProductPr2Commutes
_ _ _
(is_binary_coprod_enriched_to_BinProduct Ha w)
_
(enriched_from_arr E f)
(enriched_from_arr E g)).
cbn.
unfold precomp_arr, enriched_coprod_cocone_in2.
rewrite enriched_from_arr_comp.
rewrite !assoc.
apply maponpaths_2.
rewrite !enriched_from_to_arr.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite <- tensor_split'.
apply idpath.
use (invmaponpathsweq (make_weq _ (isweq_enriched_from_arr E _ _))) ; cbn.
refine (_ @ BinProductPr2Commutes
_ _ _
(is_binary_coprod_enriched_to_BinProduct Ha w)
_
(enriched_from_arr E f)
(enriched_from_arr E g)).
cbn.
unfold precomp_arr, enriched_coprod_cocone_in2.
rewrite enriched_from_arr_comp.
rewrite !assoc.
apply maponpaths_2.
rewrite !enriched_from_to_arr.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite <- tensor_split'.
apply idpath.
Proposition is_binary_coprod_enriched_arrow_eq
{w : C}
{f g : a --> w}
(q₁ : enriched_coprod_cocone_in1 a · f = enriched_coprod_cocone_in1 a · g)
(q₂ : enriched_coprod_cocone_in2 a · f = enriched_coprod_cocone_in2 a · g)
: f = g.
Show proof.
refine (!(enriched_to_from_arr E _) @ _ @ enriched_to_from_arr E _).
apply maponpaths.
use (BinProductArrowsEq
_ _ _
(is_binary_coprod_enriched_to_BinProduct Ha w)).
- cbn.
unfold precomp_arr.
rewrite !assoc.
rewrite !tensor_rinvunitor.
rewrite !assoc'.
rewrite !(maponpaths (λ z, _ · z) (assoc _ _ _)).
rewrite <- !tensor_split'.
use (invmaponpathsweq (make_weq _ (isweq_enriched_to_arr E _ _))) ; cbn.
rewrite !assoc.
rewrite mon_rinvunitor_I_mon_linvunitor_I.
rewrite <- !(enriched_to_arr_comp E).
exact q₁.
- cbn.
unfold precomp_arr.
rewrite !assoc.
rewrite !tensor_rinvunitor.
rewrite !assoc'.
rewrite !(maponpaths (λ z, _ · z) (assoc _ _ _)).
rewrite <- !tensor_split'.
use (invmaponpathsweq (make_weq _ (isweq_enriched_to_arr E _ _))) ; cbn.
rewrite !assoc.
rewrite mon_rinvunitor_I_mon_linvunitor_I.
rewrite <- !(enriched_to_arr_comp E).
exact q₂.
apply maponpaths.
use (BinProductArrowsEq
_ _ _
(is_binary_coprod_enriched_to_BinProduct Ha w)).
- cbn.
unfold precomp_arr.
rewrite !assoc.
rewrite !tensor_rinvunitor.
rewrite !assoc'.
rewrite !(maponpaths (λ z, _ · z) (assoc _ _ _)).
rewrite <- !tensor_split'.
use (invmaponpathsweq (make_weq _ (isweq_enriched_to_arr E _ _))) ; cbn.
rewrite !assoc.
rewrite mon_rinvunitor_I_mon_linvunitor_I.
rewrite <- !(enriched_to_arr_comp E).
exact q₁.
- cbn.
unfold precomp_arr.
rewrite !assoc.
rewrite !tensor_rinvunitor.
rewrite !assoc'.
rewrite !(maponpaths (λ z, _ · z) (assoc _ _ _)).
rewrite <- !tensor_split'.
use (invmaponpathsweq (make_weq _ (isweq_enriched_to_arr E _ _))) ; cbn.
rewrite !assoc.
rewrite mon_rinvunitor_I_mon_linvunitor_I.
rewrite <- !(enriched_to_arr_comp E).
exact q₂.
Definition underlying_BinCoproduct
: BinCoproduct x y.
Show proof.
use make_BinCoproduct.
- exact a.
- exact (enriched_coprod_cocone_in1 a).
- exact (enriched_coprod_cocone_in2 a).
- intros w f g.
use iscontraprop1.
+ abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply isapropdirprod ; apply homset_property | ] ;
exact (is_binary_coprod_enriched_arrow_eq
(pr12 φ₁ @ !(pr12 φ₂))
(pr22 φ₁ @ !(pr22 φ₂)))).
+ exact (is_binary_coprod_enriched_arrow f g
,,
is_binary_coprod_enriched_arrow_in1 f g
,,
is_binary_coprod_enriched_arrow_in2 f g).
End InUnderlying.- exact a.
- exact (enriched_coprod_cocone_in1 a).
- exact (enriched_coprod_cocone_in2 a).
- intros w f g.
use iscontraprop1.
+ abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply isapropdirprod ; apply homset_property | ] ;
exact (is_binary_coprod_enriched_arrow_eq
(pr12 φ₁ @ !(pr12 φ₂))
(pr22 φ₁ @ !(pr22 φ₂)))).
+ exact (is_binary_coprod_enriched_arrow f g
,,
is_binary_coprod_enriched_arrow_in1 f g
,,
is_binary_coprod_enriched_arrow_in2 f g).
5. Builders for binary coproducts
Definition make_is_binary_coprod_enriched
(a : enriched_binary_coprod_cocone)
(sum : ∏ (w : C) (v : V)
(f : v --> E ⦃ x , w ⦄)
(g : v --> E ⦃ y , w ⦄),
v --> E ⦃ a , w ⦄)
(sum_in1 : ∏ (w : C) (v : V)
(f : v --> E ⦃ x , w ⦄)
(g : v --> E ⦃ y , w ⦄),
sum w v f g · precomp_arr E w (enriched_coprod_cocone_in1 a)
=
f)
(sum_in2 : ∏ (w : C) (v : V)
(f : v --> E ⦃ x , w ⦄)
(g : v --> E ⦃ y , w ⦄),
sum w v f g · precomp_arr E w (enriched_coprod_cocone_in2 a)
=
g)
(sum_eq : ∏ (w : C) (v : V)
(φ₁ φ₂ : v --> E ⦃ a , w ⦄)
(q₁ : φ₁ · precomp_arr E w (enriched_coprod_cocone_in1 a)
=
φ₂ · precomp_arr E w (enriched_coprod_cocone_in1 a))
(q₂ : φ₁ · precomp_arr E w (enriched_coprod_cocone_in2 a)
=
φ₂ · precomp_arr E w (enriched_coprod_cocone_in2 a)),
φ₁ = φ₂)
: is_binary_coprod_enriched a.
Show proof.
Definition binary_coprod_enriched_to_coprod
(BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(w : C)
: E ⦃ a , w ⦄ --> BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄).
Show proof.
Definition make_is_binary_coprod_enriched_from_z_iso
(BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(Ha : ∏ (w : C),
is_z_isomorphism (binary_coprod_enriched_to_coprod BPV a w))
: is_binary_coprod_enriched a.
Show proof.
Section BinaryCoproductFromUnderlying.
Context (BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(coprod : isBinCoproduct
C
x y
a
(enriched_coprod_cocone_in1 a)
(enriched_coprod_cocone_in2 a))
(w : C).
Definition coprod_from_underlying_arr_map
(f : I_{V} --> BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))
: I_{V} --> E ⦃ a , w ⦄.
Show proof.
Proposition coprod_from_underlying_arr_map_eq₁
(f : I_{V} --> E ⦃ a , w ⦄)
: coprod_from_underlying_arr_map (f · binary_coprod_enriched_to_coprod BPV a w)
=
f.
Show proof.
Proposition coprod_from_underlying_arr_map_eq₂
(f : I_{V} --> BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))
: coprod_from_underlying_arr_map f · binary_coprod_enriched_to_coprod BPV a w = f.
Show proof.
Definition make_is_binary_coprod_enriched_from_underlying
(BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(prod : isBinCoproduct
C
x y
a
(enriched_coprod_cocone_in1 a)
(enriched_coprod_cocone_in2 a))
(HV : conservative_moncat V)
: is_binary_coprod_enriched a.
Show proof.
(a : enriched_binary_coprod_cocone)
(sum : ∏ (w : C) (v : V)
(f : v --> E ⦃ x , w ⦄)
(g : v --> E ⦃ y , w ⦄),
v --> E ⦃ a , w ⦄)
(sum_in1 : ∏ (w : C) (v : V)
(f : v --> E ⦃ x , w ⦄)
(g : v --> E ⦃ y , w ⦄),
sum w v f g · precomp_arr E w (enriched_coprod_cocone_in1 a)
=
f)
(sum_in2 : ∏ (w : C) (v : V)
(f : v --> E ⦃ x , w ⦄)
(g : v --> E ⦃ y , w ⦄),
sum w v f g · precomp_arr E w (enriched_coprod_cocone_in2 a)
=
g)
(sum_eq : ∏ (w : C) (v : V)
(φ₁ φ₂ : v --> E ⦃ a , w ⦄)
(q₁ : φ₁ · precomp_arr E w (enriched_coprod_cocone_in1 a)
=
φ₂ · precomp_arr E w (enriched_coprod_cocone_in1 a))
(q₂ : φ₁ · precomp_arr E w (enriched_coprod_cocone_in2 a)
=
φ₂ · precomp_arr E w (enriched_coprod_cocone_in2 a)),
φ₁ = φ₂)
: is_binary_coprod_enriched a.
Show proof.
intro w.
use make_isBinProduct.
intros v f g.
use iscontraprop1.
- abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply isapropdirprod ; apply homset_property | ] ;
exact (sum_eq
w v
(pr1 φ₁) (pr1 φ₂)
(pr12 φ₁ @ !(pr12 φ₂)) (pr22 φ₁ @ !(pr22 φ₂)))).
- simple refine (_ ,, _ ,, _).
+ exact (sum w v f g).
+ exact (sum_in1 w v f g).
+ exact (sum_in2 w v f g).
use make_isBinProduct.
intros v f g.
use iscontraprop1.
- abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply isapropdirprod ; apply homset_property | ] ;
exact (sum_eq
w v
(pr1 φ₁) (pr1 φ₂)
(pr12 φ₁ @ !(pr12 φ₂)) (pr22 φ₁ @ !(pr22 φ₂)))).
- simple refine (_ ,, _ ,, _).
+ exact (sum w v f g).
+ exact (sum_in1 w v f g).
+ exact (sum_in2 w v f g).
Definition binary_coprod_enriched_to_coprod
(BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(w : C)
: E ⦃ a , w ⦄ --> BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄).
Show proof.
use BinProductArrow.
- exact (precomp_arr E w (enriched_coprod_cocone_in1 a)).
- exact (precomp_arr E w (enriched_coprod_cocone_in2 a)).
- exact (precomp_arr E w (enriched_coprod_cocone_in1 a)).
- exact (precomp_arr E w (enriched_coprod_cocone_in2 a)).
Definition make_is_binary_coprod_enriched_from_z_iso
(BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(Ha : ∏ (w : C),
is_z_isomorphism (binary_coprod_enriched_to_coprod BPV a w))
: is_binary_coprod_enriched a.
Show proof.
intro w.
use (isBinProduct_z_iso (pr2 (BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))) (_ ,, Ha w) _).
- abstract
(unfold binary_coprod_enriched_to_coprod ; cbn ;
refine (!_) ;
apply BinProductPr1Commutes).
- abstract
(unfold binary_coprod_enriched_to_coprod ; cbn ;
refine (!_) ;
apply BinProductPr2Commutes).
use (isBinProduct_z_iso (pr2 (BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))) (_ ,, Ha w) _).
- abstract
(unfold binary_coprod_enriched_to_coprod ; cbn ;
refine (!_) ;
apply BinProductPr1Commutes).
- abstract
(unfold binary_coprod_enriched_to_coprod ; cbn ;
refine (!_) ;
apply BinProductPr2Commutes).
Section BinaryCoproductFromUnderlying.
Context (BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(coprod : isBinCoproduct
C
x y
a
(enriched_coprod_cocone_in1 a)
(enriched_coprod_cocone_in2 a))
(w : C).
Definition coprod_from_underlying_arr_map
(f : I_{V} --> BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))
: I_{V} --> E ⦃ a , w ⦄.
Show proof.
apply enriched_from_arr.
use (BinCoproductArrow (make_BinCoproduct _ _ _ _ _ _ coprod)).
- exact (enriched_to_arr E (f · BinProductPr1 _ _)).
- exact (enriched_to_arr E (f · BinProductPr2 _ _)).
use (BinCoproductArrow (make_BinCoproduct _ _ _ _ _ _ coprod)).
- exact (enriched_to_arr E (f · BinProductPr1 _ _)).
- exact (enriched_to_arr E (f · BinProductPr2 _ _)).
Proposition coprod_from_underlying_arr_map_eq₁
(f : I_{V} --> E ⦃ a , w ⦄)
: coprod_from_underlying_arr_map (f · binary_coprod_enriched_to_coprod BPV a w)
=
f.
Show proof.
unfold coprod_from_underlying_arr_map.
refine (_ @ enriched_from_to_arr E f).
apply maponpaths.
use (BinCoproductArrowsEq
_ _ _
(make_BinCoproduct C x y a _ _ coprod)).
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr1Commutes.
rewrite !BinCoproductIn1Commutes ; cbn.
rewrite (enriched_to_arr_comp E).
apply maponpaths.
unfold precomp_arr.
rewrite !assoc.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite enriched_from_to_arr.
rewrite <- tensor_split'.
apply idpath.
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr2Commutes.
rewrite !BinCoproductIn2Commutes ; cbn.
rewrite (enriched_to_arr_comp E).
apply maponpaths.
unfold precomp_arr.
rewrite !assoc.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite enriched_from_to_arr.
rewrite <- tensor_split'.
apply idpath.
refine (_ @ enriched_from_to_arr E f).
apply maponpaths.
use (BinCoproductArrowsEq
_ _ _
(make_BinCoproduct C x y a _ _ coprod)).
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr1Commutes.
rewrite !BinCoproductIn1Commutes ; cbn.
rewrite (enriched_to_arr_comp E).
apply maponpaths.
unfold precomp_arr.
rewrite !assoc.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite enriched_from_to_arr.
rewrite <- tensor_split'.
apply idpath.
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr2Commutes.
rewrite !BinCoproductIn2Commutes ; cbn.
rewrite (enriched_to_arr_comp E).
apply maponpaths.
unfold precomp_arr.
rewrite !assoc.
rewrite tensor_rinvunitor.
rewrite mon_linvunitor_I_mon_rinvunitor_I.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite enriched_from_to_arr.
rewrite <- tensor_split'.
apply idpath.
Proposition coprod_from_underlying_arr_map_eq₂
(f : I_{V} --> BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))
: coprod_from_underlying_arr_map f · binary_coprod_enriched_to_coprod BPV a w = f.
Show proof.
unfold coprod_from_underlying_arr_map.
use (BinProductArrowsEq
_ _ _
(BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))).
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr1Commutes.
rewrite enriched_from_arr_precomp.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
apply (BinCoproductIn1Commutes _ _ _ (make_BinCoproduct C x y a _ _ coprod)).
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr2Commutes.
rewrite enriched_from_arr_precomp.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
apply (BinCoproductIn2Commutes _ _ _ (make_BinCoproduct C x y a _ _ coprod)).
End BinaryCoproductFromUnderlying.use (BinProductArrowsEq
_ _ _
(BPV (E ⦃ x , w ⦄) (E ⦃ y , w ⦄))).
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr1Commutes.
rewrite enriched_from_arr_precomp.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
apply (BinCoproductIn1Commutes _ _ _ (make_BinCoproduct C x y a _ _ coprod)).
- unfold binary_coprod_enriched_to_coprod.
rewrite !assoc'.
rewrite !BinProductPr2Commutes.
rewrite enriched_from_arr_precomp.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
apply (BinCoproductIn2Commutes _ _ _ (make_BinCoproduct C x y a _ _ coprod)).
Definition make_is_binary_coprod_enriched_from_underlying
(BPV : BinProducts V)
(a : enriched_binary_coprod_cocone)
(prod : isBinCoproduct
C
x y
a
(enriched_coprod_cocone_in1 a)
(enriched_coprod_cocone_in2 a))
(HV : conservative_moncat V)
: is_binary_coprod_enriched a.
Show proof.
use (make_is_binary_coprod_enriched_from_z_iso BPV).
intros w.
use HV.
use isweq_iso.
- exact (coprod_from_underlying_arr_map BPV a prod w).
- exact (coprod_from_underlying_arr_map_eq₁ BPV a prod w).
- exact (coprod_from_underlying_arr_map_eq₂ BPV a prod w).
intros w.
use HV.
use isweq_iso.
- exact (coprod_from_underlying_arr_map BPV a prod w).
- exact (coprod_from_underlying_arr_map_eq₁ BPV a prod w).
- exact (coprod_from_underlying_arr_map_eq₂ BPV a prod w).
6. Coproducts are closed under iso
Section CoprodIso.
Context (a : enriched_binary_coprod_cocone)
(Ha : is_binary_coprod_enriched a)
(b : C)
(f : z_iso a b).
Definition enriched_binary_prod_cone_from_iso
: enriched_binary_coprod_cocone
:= make_enriched_binary_coprod_cocone
b
(enriched_from_arr E (enriched_coprod_cocone_in1 a · f))
(enriched_from_arr E (enriched_coprod_cocone_in2 a · f)).
Definition is_binary_coprod_enriched_from_iso
: is_binary_coprod_enriched enriched_binary_prod_cone_from_iso.
Show proof.
Context (a : enriched_binary_coprod_cocone)
(Ha : is_binary_coprod_enriched a)
(b : C)
(f : z_iso a b).
Definition enriched_binary_prod_cone_from_iso
: enriched_binary_coprod_cocone
:= make_enriched_binary_coprod_cocone
b
(enriched_from_arr E (enriched_coprod_cocone_in1 a · f))
(enriched_from_arr E (enriched_coprod_cocone_in2 a · f)).
Definition is_binary_coprod_enriched_from_iso
: is_binary_coprod_enriched enriched_binary_prod_cone_from_iso.
Show proof.
intros w.
use (isBinProduct_z_iso (Ha w)).
- exact (precomp_arr_z_iso E w f).
- abstract
(cbn ;
rewrite <- precomp_arr_comp ;
apply maponpaths ;
unfold enriched_binary_prod_cone_from_iso ; cbn ;
unfold enriched_coprod_cocone_in1 ; cbn ;
rewrite enriched_to_from_arr ;
apply idpath).
- abstract
(cbn ;
rewrite <- precomp_arr_comp ;
apply maponpaths ;
unfold enriched_binary_prod_cone_from_iso ; cbn ;
unfold enriched_coprod_cocone_in2 ; cbn ;
rewrite enriched_to_from_arr ;
apply idpath).
End CoprodIso.use (isBinProduct_z_iso (Ha w)).
- exact (precomp_arr_z_iso E w f).
- abstract
(cbn ;
rewrite <- precomp_arr_comp ;
apply maponpaths ;
unfold enriched_binary_prod_cone_from_iso ; cbn ;
unfold enriched_coprod_cocone_in1 ; cbn ;
rewrite enriched_to_from_arr ;
apply idpath).
- abstract
(cbn ;
rewrite <- precomp_arr_comp ;
apply maponpaths ;
unfold enriched_binary_prod_cone_from_iso ; cbn ;
unfold enriched_coprod_cocone_in2 ; cbn ;
rewrite enriched_to_from_arr ;
apply idpath).
7. Coproducts are isomorphic
Definition map_between_coproduct_enriched
{a b : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(Hb : is_binary_coprod_enriched b)
: a --> b
:= is_binary_coprod_enriched_arrow
Ha
(enriched_coprod_cocone_in1 b)
(enriched_coprod_cocone_in2 b).
Lemma iso_between_coproduct_enriched_inv
{a b : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(Hb : is_binary_coprod_enriched b)
: map_between_coproduct_enriched Ha Hb · map_between_coproduct_enriched Hb Ha
=
identity _.
Show proof.
Definition iso_between_coproduct_enriched
{a b : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(Hb : is_binary_coprod_enriched b)
: z_iso a b.
Show proof.
{a b : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(Hb : is_binary_coprod_enriched b)
: a --> b
:= is_binary_coprod_enriched_arrow
Ha
(enriched_coprod_cocone_in1 b)
(enriched_coprod_cocone_in2 b).
Lemma iso_between_coproduct_enriched_inv
{a b : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(Hb : is_binary_coprod_enriched b)
: map_between_coproduct_enriched Ha Hb · map_between_coproduct_enriched Hb Ha
=
identity _.
Show proof.
unfold map_between_coproduct_enriched.
use (is_binary_coprod_enriched_arrow_eq Ha).
- rewrite !assoc.
rewrite !is_binary_coprod_enriched_arrow_in1.
rewrite id_right.
apply idpath.
- rewrite !assoc.
rewrite !is_binary_coprod_enriched_arrow_in2.
rewrite id_right.
apply idpath.
use (is_binary_coprod_enriched_arrow_eq Ha).
- rewrite !assoc.
rewrite !is_binary_coprod_enriched_arrow_in1.
rewrite id_right.
apply idpath.
- rewrite !assoc.
rewrite !is_binary_coprod_enriched_arrow_in2.
rewrite id_right.
apply idpath.
Definition iso_between_coproduct_enriched
{a b : enriched_binary_coprod_cocone}
(Ha : is_binary_coprod_enriched a)
(Hb : is_binary_coprod_enriched b)
: z_iso a b.
Show proof.
use make_z_iso.
- exact (map_between_coproduct_enriched Ha Hb).
- exact (map_between_coproduct_enriched Hb Ha).
- split.
+ apply iso_between_coproduct_enriched_inv.
+ apply iso_between_coproduct_enriched_inv.
End EnrichedCoproducts.- exact (map_between_coproduct_enriched Ha Hb).
- exact (map_between_coproduct_enriched Hb Ha).
- split.
+ apply iso_between_coproduct_enriched_inv.
+ apply iso_between_coproduct_enriched_inv.
8. Enriched categories with coproducts
Definition enrichment_binary_coprod
{V : monoidal_cat}
{C : category}
(E : enrichment C V)
: UU
:= ∏ (x y : C),
∑ (a : enriched_binary_coprod_cocone E x y),
is_binary_coprod_enriched E x y a.
Proposition isaprop_enrichment_binary_coprod
{V : monoidal_cat}
{C : category}
(HC : is_univalent C)
(E : enrichment C V)
: isaprop (enrichment_binary_coprod E).
Show proof.
Definition cat_with_enrichment_coproduct
(V : monoidal_cat)
: UU
:= ∑ (C : cat_with_enrichment V), enrichment_binary_coprod C.
Coercion cat_with_enrichment_coproduct_to_cat_with_enrichment
{V : monoidal_cat}
(C : cat_with_enrichment_coproduct V)
: cat_with_enrichment V
:= pr1 C.
Definition coproducts_of_cat_with_enrichment
{V : monoidal_cat}
(C : cat_with_enrichment_coproduct V)
: enrichment_binary_coprod C
:= pr2 C.
{V : monoidal_cat}
{C : category}
(E : enrichment C V)
: UU
:= ∏ (x y : C),
∑ (a : enriched_binary_coprod_cocone E x y),
is_binary_coprod_enriched E x y a.
Proposition isaprop_enrichment_binary_coprod
{V : monoidal_cat}
{C : category}
(HC : is_univalent C)
(E : enrichment C V)
: isaprop (enrichment_binary_coprod E).
Show proof.
use invproofirrelevance.
intros φ₁ φ₂.
use funextsec ; intro x.
use funextsec ; intro y.
use subtypePath.
{
intro.
apply isaprop_is_binary_coprod_enriched.
}
use total2_paths_f.
- use (isotoid _ HC).
use iso_between_coproduct_enriched.
+ exact (pr2 (φ₁ x y)).
+ exact (pr2 (φ₂ x y)).
- rewrite transportf_dirprod.
use pathsdirprod.
+ rewrite transportf_enriched_arr_r.
rewrite idtoiso_isotoid.
cbn.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
unfold map_between_coproduct_enriched ; cbn.
apply is_binary_coprod_enriched_arrow_in1.
+ rewrite transportf_enriched_arr_r.
rewrite idtoiso_isotoid.
cbn.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
unfold map_between_coproduct_enriched ; cbn.
apply is_binary_coprod_enriched_arrow_in2.
intros φ₁ φ₂.
use funextsec ; intro x.
use funextsec ; intro y.
use subtypePath.
{
intro.
apply isaprop_is_binary_coprod_enriched.
}
use total2_paths_f.
- use (isotoid _ HC).
use iso_between_coproduct_enriched.
+ exact (pr2 (φ₁ x y)).
+ exact (pr2 (φ₂ x y)).
- rewrite transportf_dirprod.
use pathsdirprod.
+ rewrite transportf_enriched_arr_r.
rewrite idtoiso_isotoid.
cbn.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
unfold map_between_coproduct_enriched ; cbn.
apply is_binary_coprod_enriched_arrow_in1.
+ rewrite transportf_enriched_arr_r.
rewrite idtoiso_isotoid.
cbn.
refine (_ @ enriched_from_to_arr E _).
apply maponpaths.
unfold map_between_coproduct_enriched ; cbn.
apply is_binary_coprod_enriched_arrow_in2.
Definition cat_with_enrichment_coproduct
(V : monoidal_cat)
: UU
:= ∑ (C : cat_with_enrichment V), enrichment_binary_coprod C.
Coercion cat_with_enrichment_coproduct_to_cat_with_enrichment
{V : monoidal_cat}
(C : cat_with_enrichment_coproduct V)
: cat_with_enrichment V
:= pr1 C.
Definition coproducts_of_cat_with_enrichment
{V : monoidal_cat}
(C : cat_with_enrichment_coproduct V)
: enrichment_binary_coprod C
:= pr2 C.