Library UniMath.CategoryTheory.Monads.RelativeMonads

**********************************************************
Contents:
Reference:
Written by: Benedikt Ahrens (started May 2017) Extended by: Ralph Matthes (starting August 2018), in particular all on univalence

Definition of relative monads

Section RMonad_def.

Context {C D : precategory_data} {J : functor_data C D}.

Definition RelMonad_data : UU
  := F : C -> D, ( c, D J c, F c)
                 × ( c d, D J c, F d D F c, F d).

Definition RelMonad_ob (R : RelMonad_data) (c : C) : D := pr1 R c.
Coercion RelMonad_ob : RelMonad_data >-> Funclass.
Definition r_eta (R : RelMonad_data) c : D J c, R c := pr1 (pr2 R) c.
Definition r_bind (R : RelMonad_data) {c d} (f : DJ c, R d) : D R c, R d
  := pr2 (pr2 R) _ _ f.

Definition RelMonad_axioms (R : RelMonad_data) : UU
  := ( c, r_bind R (r_eta R c) = identity _ )
   × ( c d (f : DJ c, R d), r_eta R _ · r_bind R f = f)
   × ( c d e (f : D J c, R d) (g : D J d, R e),
      r_bind R f · r_bind R g = r_bind R (f · r_bind R g)).

Lemma isaprop_RelMonad_axioms (R : RelMonad_data)(hs : has_homsets D) :
  isaprop (RelMonad_axioms R).
Show proof.
  apply isapropdirprod.
  - apply impred_isaprop; intros. apply hs.
  - apply isapropdirprod; repeat (apply impred_isaprop; intros); apply hs.

Definition r_bind_r_eta {R : RelMonad_data} (X : RelMonad_axioms R)
  : c, r_bind R (r_eta R c) = identity _ := pr1 X.
Definition r_eta_r_bind {R : RelMonad_data} (X : RelMonad_axioms R)
  : c d (f : DJ c, R d), r_eta R _ · r_bind R f = f := pr1 (pr2 X).
Definition r_bind_r_bind {R : RelMonad_data} (X : RelMonad_axioms R)
  : c d e (f : D J c, R d) (g : D J d, R e),
         r_bind R f · r_bind R g = r_bind R (f · r_bind R g)
  := pr2 (pr2 X).

Definition RelMonad : UU := R : RelMonad_data, RelMonad_axioms R.
Coercion RelMonad_data_from_RelMonad (R : RelMonad) : RelMonad_data := pr1 R.
Coercion RelMonad_axioms_from_RelMonad (R : RelMonad) : RelMonad_axioms R := pr2 R.

Lemma RelMonad_eq (R R' : RelMonad)(hs : has_homsets D) :
  pr1 R = pr1 R' -> R = R'.
Show proof.
  intro p.
  apply (total2_paths_f p).
  apply proofirrelevance.
  apply isaprop_RelMonad_axioms.
  exact hs.

previous proof
Lemma RelMonad_eq_obsolete (R R' : RelMonad)(hs : has_homsets D) :
  pr1 R = pr1 R' -> R = R'.
Show proof.
  intro p.
  apply subtypeInjectivity.
  - intro R''.
    apply isaprop_RelMonad_axioms.
    exact hs.
  - assumption.

generalize UniMath.CategoryTheory.Monads.KTriples.map
Definition r_lift (R : RelMonad_data) {c d : C} (f : c --> d) : R c --> R d
  := r_bind R (#J f · r_eta R _ ).

End RMonad_def.

generalize UniMath.CategoryTheory.Monads.KTriples.map_id and UniMath.CategoryTheory.Monads.KTriples.map_map
Definition is_functor_r_lift {C: precategory_data} {D: precategory} {J : functor C D} (R : RelMonad)
  : is_functor (RelMonad_ob R,, @r_lift _ _ J R).
Show proof.
  split; [intro c | intros a b c f g]; cbn; unfold r_lift; cbn.
  - etrans. apply maponpaths.
      etrans. eapply (maponpaths (λ x, x · _ )). apply functor_id.
      apply id_left.
    apply (r_bind_r_eta R).
  - etrans. 2: { eapply pathsinv0; apply (r_bind_r_bind R). }
    apply maponpaths.
    etrans.
    apply map_on_two_paths. apply functor_comp. apply idpath.
    etrans.
    2: { etrans. 2: apply assoc.
         eapply pathsinv0. apply maponpaths. apply (r_eta_r_bind R).
    }
    apply pathsinv0, assoc.

Definition R_functor {C: precategory_data} {D: precategory} {J : functor C D}
  (R : RelMonad): functor C D
  := _,, is_functor_r_lift(J:=J) R.

generalize UniMath.CategoryTheory.Monads.KTriples.is_nat_trans_η
Definition is_nat_trans_r_eta {C: precategory_data} {D: precategory} {J : functor C D}(R : RelMonad)
  : is_nat_trans J (R_functor R) (r_eta R).
Show proof.
  red.
  intros c c' f.
  unfold R_functor; simpl.
  unfold r_lift; simpl.
  apply pathsinv0.
  apply (r_eta_r_bind R).

Definition r_eta_nat_trans {C: precategory_data} {D: precategory} {J : functor C D}(R : RelMonad)
  : nat_trans J (R_functor R) := _ ,, is_nat_trans_r_eta R.

generalize UniMath.CategoryTheory.Monads.KTriples.map_bind
Definition r_lift_r_bind {C: precategory_data} {D: precategory} {J : functor C D}(R : RelMonad)(a b c : C) (f : b --> c) (g : J a --> R b)
  : r_bind R g · r_lift R f = r_bind R (g · r_lift R f).
Show proof.
  unfold r_lift.
  rewrite <- (r_bind_r_bind R).
  apply idpath.

generalize UniMath.CategoryTheory.Monads.KTriples.bind_map
Definition r_bind_r_lift {C: precategory_data} {D: precategory} {J : functor C D}(R : RelMonad)(a b c : C) (f : J b --> R c) (g : a --> b)
  : r_lift R g · r_bind R f = r_bind R (#J g · f).
Show proof.
  unfold r_lift.
  rewrite (r_bind_r_bind R).
  apply maponpaths.
  rewrite <- assoc.
  apply cancel_precomposition.
  apply (r_eta_r_bind R).

Arguments RelMonad_data {C} {D} J.
Arguments RelMonad {C} {D} J.

analogue of UniMath.CategoryTheory.Core.Functors.functor_eq_eq_from_functor_ob_eq
Definition relmonad_eq_eq_from_relmonad_ob_eq {C: precategory_data} {D: precategory} (hs: has_homsets D)
           {J : functor C D} (R R' : RelMonad J) (p q : R = R')
    (H : base_paths _ _ (base_paths _ _ p) =
         base_paths _ _ (base_paths _ _ q)) :
    p = q.
Show proof.
  apply (invmaponpathsweq (total2_paths_equiv _ _ _ )); simpl.
  assert (H' : base_paths _ _ p = base_paths _ _ q).
  { apply (invmaponpathsweq (total2_paths_equiv _ _ _ )); simpl.
    apply (two_arg_paths_f H), uip.
    apply isaset_dirprod.
    - apply impred_isaset; intro c. apply hs.
    - apply impred_isaset; intro c; apply impred_isaset; intro d; apply impred_isaset; intro f.
      apply hs.
  }
  apply (two_arg_paths_f H'), uip, isasetaprop, isaprop_RelMonad_axioms, hs.

Kleisli precategory associated to a relative monad
Section Kleisli_precat.

Context {C: precategory_data} {D : precategory} {J : functor_data C D}.

Definition Kleisli_precat_ob_mor (R : RelMonad_data J) : precategory_ob_mor :=
  make_precategory_ob_mor (ob C) (λ c d, J c --> R d).

Definition Kleisli_precat_data (R : RelMonad_data J) : precategory_data :=
  make_precategory_data (Kleisli_precat_ob_mor R) (λ c, r_eta R c)
                                              (λ a b c f g, f · r_bind R g).

Lemma Kleisli_precat_is_precat (R : RelMonad J) : is_precategory (Kleisli_precat_data R).
Show proof.
  apply is_precategory_one_assoc_to_two.
  do 2 try apply tpair;
    try unfold compose; simpl.
  - intros a b f.
    apply (r_eta_r_bind R).
  - intros a b f.
    now rewrite (r_bind_r_eta R), id_right.
  - intros a b c d f g h.
    now rewrite <- assoc, (r_bind_r_bind R).

Definition Kleisli_precat (R : RelMonad J) : precategory := (_,, Kleisli_precat_is_precat R).

End Kleisli_precat.

Kleisli category associated to a relative monad
Section Kleisli_cat.

Lemma Kleisli_precat_has_homsets {C : precategory_data} {D : category} {J : functor_data C D} (R : RelMonad J)
      (hs : has_homsets D) : has_homsets (Kleisli_precat_data R).
Show proof.
  intros a b.
  apply hs.

Definition Kleisli_cat {C : precategory_data} {D : category} {J : functor_data C D} (R : RelMonad J)
  : category := (Kleisli_precat R,, Kleisli_precat_has_homsets R (homset_property D)).

End Kleisli_cat.

Section MorphismsOfRelativeMonads.

Definition RelMonadMor_data {C D : precategory_data}
           {J : functor_data C D} (R R' : RelMonad_data J): UU :=
   a : C, R a --> R' a.

Definition RelMonadMor_axioms {C D : precategory_data}
           {J : functor_data C D} {R R' : RelMonad_data J} (α : RelMonadMor_data R R') : UU
  := ( a : C, r_eta R a · α a = r_eta R' a) ×
     ( (a b : C) (f : DJ a,R b), α a · r_bind R' (f · α b) = (r_bind R f α b).

Lemma isaprop_RelMonadMor_axioms {C D : precategory_data}
      {J : functor_data C D} {R R' : RelMonad_data J} (α : RelMonadMor_data R R')
      (hs : has_homsets D) :
  isaprop (RelMonadMor_axioms α).
Show proof.
  apply isapropdirprod; repeat (apply impred_isaprop; intros); apply hs.

generalize UniMath.CategoryTheory.Monads.KTriples.Kleisli_Mor_η
Definition r_eta_α {C D : precategory_data} {J : functor_data C D}
           {R R' : RelMonad_data J} {α : RelMonadMor_data R R'}
           (X : RelMonadMor_axioms α)
  : a : C, r_eta R a · α a = r_eta R' a := pr1 X.

generalize UniMath.CategoryTheory.Monads.KTriples.Kleisli_Mor_bind
Definition α_r_bind {C D : precategory_data} {J : functor_data C D}
           {R R' : RelMonad_data J} {α : RelMonadMor_data R R'}
           (X : RelMonadMor_axioms α)
  : (a b : C) (f : DJ a,R b), α a · r_bind R' (f · α b) = (r_bind R f) · α b := pr2 X.

Definition RelMonadMor {C D : precategory_data} {J : functor_data C D}
           (R R' : RelMonad_data J) : UU
  := α : RelMonadMor_data R R', RelMonadMor_axioms α.
Coercion RelMonadMor_data_from_RelMonadMor {C D : precategory_data} {J : functor_data C D}
           {R R' : RelMonad_data J} (α : RelMonadMor R R') : RelMonadMor_data R R' := pr1 α.

 Coercion RelMonadMor_axioms_from_RelMonadMor {C D : precategory_data} {J : functor_data C D}
         {R R' : RelMonad_data J} (α : RelMonadMor R R') :
  RelMonadMor_axioms α := pr2 α.

Definition RelMonadMor_map {C D : precategory_data} {J : functor_data C D}
           {R R' : RelMonad_data J} (f : RelMonadMor R R') (X : C)
  : R X --> R' X
  := (f : RelMonadMor_data _ _ ) X.

Definition RelMonadMor_equiv {C D : precategory_data} (hs : has_homsets D)
           {J : functor_data C D} {R R' : RelMonad_data J} (α β : RelMonadMor R R') :
  α = β ((α: RelMonadMor_data R R') = β).
Show proof.
  apply subtypeInjectivity.
  intro a.
  apply isaprop_RelMonadMor_axioms.
  exact hs.

generalize UniMath.CategoryTheory.Monads.KTriples.is_nat_trans_kleisli_mor
Definition is_nat_trans_RelMonadMor {C : precategory_data} {D: precategory} {J : functor C D}
           {R R' : RelMonad J} (α : RelMonadMor R R'):
  is_nat_trans (R_functor R) (R_functor R') (α:RelMonadMor_data R R').
Show proof.
  red.
  intros c c' f.
  unfold R_functor; simpl. unfold r_lift; simpl.
  rewrite <- (α_r_bind α).
  rewrite <- assoc.
  now rewrite (r_eta_α α).

Definition nat_trans_RelMonadMor {C : precategory_data} {D: precategory} {J : functor C D}
           {R R' : RelMonad J} (α : RelMonadMor R R'):
  nat_trans (R_functor R) (R_functor R') := _ ,, is_nat_trans_RelMonadMor α.

End MorphismsOfRelativeMonads.

Section PrecategoryOfRelativeMonads.


Lemma RelMonad_identity_laws {C : precategory_data} {D : precategory}
      {J : functor_data C D} (R : RelMonad_data J):
  RelMonadMor_axioms (λ a : C, identity (R a)).
Show proof.
  split; simpl; intros c.
  - apply id_right.
  - intros. do 2 rewrite id_right; apply id_left.

Definition RelMonad_identity {C : precategory_data} {D : precategory}
  {J : functor_data C D} (R : RelMonad_data J): RelMonadMor R R
  := _ ,, RelMonad_identity_laws R.


generalize UniMath.CategoryTheory.Monads.KTriples.Kleisli_composition_laws
Lemma RelMonad_composition_laws {C : precategory_data} {D : precategory}
      {J : functor_data C D} {R R' R'' : RelMonad_data J}
      (α : RelMonadMor R R') (α' : RelMonadMor R' R''):
  RelMonadMor_axioms (λ a : C, (α : RelMonadMor_data R R') a · (α' : RelMonadMor_data R' R'') a).
Show proof.
  split; intros; simpl.
  - rewrite assoc.
    rewrite (r_eta_α α).
    apply (r_eta_α α').
  - intermediate_path ((α:RelMonadMor_data R R') a ·
             ((α':RelMonadMor_data R' R'') a ·
              r_bind R'' ((f · (α:RelMonadMor_data R R') b) ·
                        (α':RelMonadMor_data R' R'') b))).
    * now repeat rewrite assoc.
    * rewrite (α_r_bind α').
      rewrite assoc. rewrite (α_r_bind α).
      apply pathsinv0. apply assoc.

Definition RelMonad_composition {C : precategory_data} {D : precategory}
      {J : functor_data C D} {R R' R'' : RelMonad_data J}
      (α : RelMonadMor R R') (α' : RelMonadMor R' R''):
  RelMonadMor R R'' := _ ,, RelMonad_composition_laws α α'.


Definition precategory_RelMonad_ob_mor {C : precategory_data} {D : precategory}
      (J : functor_data C D) : precategory_ob_mor :=
  make_precategory_ob_mor (RelMonad J) RelMonadMor.

Definition precategory_RelMonad_data {C : precategory_data} {D : precategory}
           (J : functor_data C D) : precategory_data.
Show proof.
  apply (make_precategory_data (precategory_RelMonad_ob_mor J)).
  - intro R.
    apply RelMonad_identity.
  - intros R R' R'' α α'.
    apply (RelMonad_composition α α').

Lemma precategory_RelMonad_axioms {C : precategory_data} {D : precategory}
      (hs : has_homsets D) (J : functor_data C D) :
  is_precategory (precategory_RelMonad_data J).
Show proof.
  repeat split; simpl; intros.
  - apply (invmap (RelMonadMor_equiv hs _ _ )).
    apply funextsec. intros x. apply id_left.
  - apply (invmap (RelMonadMor_equiv hs _ _ )).
    apply funextsec. intros x. apply id_right.
  - apply (invmap (RelMonadMor_equiv hs _ _ )).
    apply funextsec. intros x. apply assoc.
  - apply (invmap (RelMonadMor_equiv hs _ _ )).
    apply funextsec. intros x. apply assoc'.

Definition precategory_RelMonad {C : precategory_data} {D : precategory}
      (hs : has_homsets D) (J : functor_data C D): precategory :=
  _ ,, precategory_RelMonad_axioms hs J.

Lemma has_homsets_RelMonad {C : precategory_data} {D : precategory} (hs: has_homsets D)
      (J : functor_data C D) :
  has_homsets (precategory_RelMonad hs J).
Show proof.
  intros R R'. simpl. unfold RelMonadMor.
  apply isaset_total2 .
  - apply impred_isaset.
    intro. apply hs.
  - intro α.
    apply isasetaprop.
    apply isaprop_RelMonadMor_axioms.
    apply hs.


Definition category_RelMonad {C : precategory_data} (D : category)
      (J : functor_data C D) : category :=
  precategory_RelMonad (homset_property D) J,, has_homsets_RelMonad (homset_property D) J.

Definition forgetfunctor_RelMonad {C : precategory} (D : category)
      (J : functor C D) :
  functor (category_RelMonad D J) (functor_category C D).
Show proof.
  use make_functor.
  - simpl.
    use make_functor_data.
    + simpl.
      exact (λ R : RelMonad J, R_functor R).
    + simpl. intros R R' α.
      exact (nat_trans_RelMonadMor α).
  - split.
    + red. intros. simpl. apply nat_trans_eq.
      * apply D.
      * intros; apply idpath.
    + unfold functor_compax. simpl. intros R R' R'' α α'. apply nat_trans_eq.
      * apply D.
      * intro c. apply idpath.

Lemma forgetRelMonad_faithful {C : precategory} (D : category)
      (J : functor C D) : faithful (forgetfunctor_RelMonad D J).
Show proof.
  intros R R'. simpl.
  apply isinclbetweensets.
  - apply isaset_total2.
    + apply impred_isaset.
      intros. apply D.
    + intros. apply isasetaprop. apply isaprop_RelMonadMor_axioms. apply D.
  - apply isaset_nat_trans. apply D.
  - intros α α' p.
    apply RelMonadMor_equiv.
    + apply D.
    + apply funextsec. intro c.
      change (nat_trans_RelMonadMor α c = nat_trans_RelMonadMor α' c).
      rewrite p.
      apply idpath.

End PrecategoryOfRelativeMonads.

Section RelativeMonads_saturated.

  Definition relmonadmor_weq_nat_trans_fails {C : precategory_data} (D : category)
    (J : functor C D) (R R': RelMonad J) :
  (category_RelMonad D J R, R') [C, D] R_functor R, R_functor R'.
Show proof.
  apply (make_weq nat_trans_RelMonadMor).
  use isweq_iso.
  - intro α.
    exists (nat_trans_data_from_nat_trans α).
    split; intros.
Abort.

Definition relmonadmor_eq_type {C : precategory_data} (D : category)
      (J : functor C D)(R R': RelMonad J) : UU
  := p : z_iso (C := [C, D]) (R_functor R) (R_functor R'),
           RelMonadMor_axioms (nat_trans_data_from_nat_trans (morphism_from_z_iso _ _ p)).

Definition relmonadmor_ob_eq {C : precategory_data} {D : category} (H: is_univalent D)
      (J : functor C D)(R R': RelMonad J) :
  (R = R') relmonadmor_eq_type D J R R'.
Proof.
  eapply weqcomp.
  - apply total2_paths_equiv.
  - set (H1 := make_weq _ ( (is_univalent_functor_category C D H) (R_functor R) (R_functor R'))).
Abort.

better upstream
Definition functor_z_iso_pointwise_if_z_iso' (C : precategory_data) (C' : category)
 (F G : ob [C, C']) (α: z_iso F G) :
      a : ob C,
       z_iso (pr1 F a) (pr1 G a) :=
  λ a, tpair _ _ (is_functor_z_iso_pointwise_if_z_iso C C' _ F G (pr1 α) (pr2 α) a).

Lemma idtoiso_functorcat_compute_pointwise' (C : precategory_data) (D : category)
  (F G : ob [C, D]) (p : F = G) (a : ob C) :
  functor_z_iso_pointwise_if_z_iso' C D F G (idtoiso p) a =
idtoiso
  (toforallpaths (λ _ : ob C, D) (pr1 (pr1 F)) (pr1 (pr1 G))
     (base_paths (pr1 F) (pr1 G) (base_paths F G p)) a).
Proof.
  induction p.
  apply z_iso_eq. apply idpath.
end of better upstream
a rather trivial observation
Definition is_z_iso_from_is_relmonadmor_z_iso {C : precategory_data} (D : category)
      (J : functor C D) {R R': RelMonad J} (α : z_iso(C := category_RelMonad D J) R R')
  : is_z_isomorphism(C := [C, D]) (nat_trans_RelMonadMor (pr1 α)).
Show proof.
  set (H' := z_iso_inv_after_z_iso α).
  set (H'':= z_iso_after_z_iso_inv α).
  set (α' := inv_from_z_iso α).
  exists (nat_trans_RelMonadMor α').
  split; simpl.
  - unfold α'. unfold R_functor.
    apply (nat_trans_eq D).
    set (aux := maponpaths pr1 H'). apply toforallpaths in aux.
    exact aux.
  - unfold α'. unfold R_functor.
    apply (nat_trans_eq D).
    set (aux := maponpaths pr1 H''). apply toforallpaths in aux.
    exact aux.

its immediate consequence
Definition z_iso_from_is_relmonadmor_z_iso {C : precategory_data} (D : category)
      (J : functor C D) {R R': RelMonad J} (α : z_iso(C := category_RelMonad D J) R R')
  : z_iso(C := [C, D]) (R_functor R) (R_functor R') :=
  (_,, is_z_iso_from_is_relmonadmor_z_iso D J α).

Corollary z_iso_from_is_relmonadmor_z_iso_p {C : precategory_data} (D : category)
          (J : functor C D) {R R': RelMonad J} (α : z_iso(C := category_RelMonad D J) R R') (c : C) :
  pr1 (pr1 α) c =
        functor_z_iso_pointwise_if_z_iso' C D
          (R_functor R) (R_functor R') (z_iso_from_is_relmonadmor_z_iso
            D J α) c.
Show proof.
  apply idpath.

Lemma z_iso_from_is_relmonadmor_z_iso_idtoiso {C : precategory_data} (D : category)
      (J : functor C D) {R R': RelMonad J} (p : @paths (category_RelMonad D J) R R'):
  z_iso_from_is_relmonadmor_z_iso D J (idtoiso p) =
  idtoiso(C := [C, D]) (maponpaths (@R_functor C D J) p).
Show proof.
  unfold z_iso_from_is_relmonadmor_z_iso.
  simpl.
  apply (z_iso_eq(C := [C, D])).
  simpl.
  apply (nat_trans_eq D).
  intro c.
  induction p.
  apply idpath.

Definition alternative_inv_to_relmonadmor_z_iso {C : precategory_data} (D : category)
           (J : functor C D) {R R': RelMonad J} (α : z_iso(C := category_RelMonad D J) R R')
  : precategory_RelMonad D J R', R.
Show proof.
  use tpair.
  - intro c.
    exact (inv_from_z_iso (functor_z_iso_pointwise_if_z_iso' C D
                             (R_functor R) (R_functor R') (z_iso_from_is_relmonadmor_z_iso
                                                             D J α) c)).
  - split.
    + intro c.
      apply pathsinv0.
      apply z_iso_inv_on_left.
      rewrite <- z_iso_from_is_relmonadmor_z_iso_p.
      apply pathsinv0.
      apply (r_eta_α (RelMonadMor_axioms_from_RelMonadMor (pr1 α))).
    + intros c d f.
      apply z_iso_inv_on_left.
      rewrite <- assoc.
      apply pathsinv0.
      apply z_iso_inv_on_right.
      do 2 rewrite <- z_iso_from_is_relmonadmor_z_iso_p.
      intermediate_path (pr1 (pr1 α) c · r_bind R' ((f · (inv_from_z_iso
           (functor_z_iso_pointwise_if_z_iso' C D (R_functor R)
              (R_functor R') (z_iso_from_is_relmonadmor_z_iso D J α) d) )) ·
                  (functor_z_iso_pointwise_if_z_iso' C D (R_functor R)
                      (R_functor R') (z_iso_from_is_relmonadmor_z_iso D J α) d ))).
      2: { apply cancel_precomposition.
           apply maponpaths.
           rewrite <- assoc.
           rewrite z_iso_after_z_iso_inv.
           apply id_right.
      }
      apply pathsinv0.
      rewrite <- z_iso_from_is_relmonadmor_z_iso_p.
      apply (α_r_bind (RelMonadMor_axioms_from_RelMonadMor (pr1 α))).

Lemma alternative_inv_to_relmonadmor_z_iso_is_inv {C : precategory_data} (D : category)
      (J : functor C D) {R R': RelMonad J} (α : z_iso(C := category_RelMonad D J) R R'):
  alternative_inv_to_relmonadmor_z_iso D J α = inv_from_z_iso α.
Show proof.
  apply inv_z_iso_unique'.
  unfold precomp_with.
  apply RelMonadMor_equiv.
  - apply D.
  - apply funextsec.
    intro c.
    unfold alternative_inv_to_relmonadmor_z_iso.
    simpl.
    apply pathsinv0.
    apply z_iso_inv_on_left.
    rewrite id_left.
    intermediate_path (pr1 (pr1 α) c).
    { apply idpath. }
    rewrite z_iso_from_is_relmonadmor_z_iso_p.
    apply idpath.

Corollary z_iso_from_is_relmonadmor_z_iso_inv_p {C : precategory_data} (D : category)
          (J : functor C D) {R R': RelMonad J} (α : z_iso(C := category_RelMonad D J) R R') (c : C) :
  pr1 (inv_from_z_iso α) c =
        inv_from_z_iso (functor_z_iso_pointwise_if_z_iso' C D
          (R_functor R) (R_functor R') (z_iso_from_is_relmonadmor_z_iso
            D J α) c).
Show proof.

the other direction, first the inverse monad morphism
Definition inv_relmonadmor_from_is_z_iso {C : precategory_data} (D : category)
  (J : functor C D){R R': RelMonad J} (α : category_RelMonad D J R, R')
  : is_z_isomorphism(C := [C, D]) (nat_trans_RelMonadMor α) category_RelMonad D J R', R.
Show proof.
  intro T.
  set (fiso := (_,, T): z_iso(C := [C, D]) (R_functor R) (R_functor R')).
  set (finv := inv_from_z_iso fiso).
  exists (pr1 finv).
  unfold finv.
  split.
  - intros c.
    unfold fiso.
    etrans.
    { apply maponpaths, pathsinv0.
      apply (nat_trans_inv_pointwise_inv_after_p_z_iso C D D (R_functor R) (R_functor R')). }
    apply pathsinv0.
    apply z_iso_inv_on_left.
    simpl.
    apply pathsinv0.
    apply (r_eta_α (RelMonadMor_axioms_from_RelMonadMor α)).
  - intros a b f.
    unfold fiso.
    etrans.
    { apply cancel_postcomposition, pathsinv0.
      apply (nat_trans_inv_pointwise_inv_after_p_z_iso C D D (R_functor R) (R_functor R')). }
    etrans.
    { do 3 apply maponpaths. apply pathsinv0.
      apply (nat_trans_inv_pointwise_inv_after_p_z_iso C D D (R_functor R) (R_functor R')). }
    etrans.
    2: { apply maponpaths.
         apply (nat_trans_inv_pointwise_inv_after_p_z_iso C D D (R_functor R) (R_functor R')). }
    apply z_iso_inv_on_left.
    rewrite <- assoc.
    apply pathsinv0.
    apply z_iso_inv_on_right.
    simpl.
    etrans.
    { apply pathsinv0.
      apply (α_r_bind (RelMonadMor_axioms_from_RelMonadMor α)). }
    apply cancel_precomposition.
    apply maponpaths.
    rewrite <- assoc.
    etrans.
    2: { apply id_right. }
    apply cancel_precomposition.
    apply z_iso_inv_on_right.
    apply pathsinv0.
    apply id_right.

verification that the proposed inverse monad morphism is suitable
Definition is_relmonadmor_z_iso_from_is_z_iso {C : precategory_data} (D : category)
  (J : functor C D) {R R': RelMonad J} (α : category_RelMonad D J R, R')
  : is_z_isomorphism(C := [C, D]) (nat_trans_RelMonadMor α) is_z_isomorphism α.
Show proof.
  intro T.
  exists (inv_relmonadmor_from_is_z_iso D J α T).
  split; simpl.
  -
    apply RelMonadMor_equiv.
    + apply D.
    + simpl.
      set (aux := z_iso_inv_after_z_iso ((_,, T): z_iso(C := [C, D]) (R_functor R) (R_functor R'))).
      apply (maponpaths pr1) in aux.
      exact aux.
  - apply RelMonadMor_equiv.
    + apply D.
    + simpl.
      set (aux := z_iso_after_z_iso_inv ((_,, T): z_iso(C := [C, D]) (R_functor R) (R_functor R'))).
      apply (maponpaths pr1) in aux.
      exact aux.

its immediate consequence
Definition relmonadmor_iso_from_is_z_iso {C : precategory_data} (D : category)
  (J : functor C D)(R R': RelMonad J) (α : precategory_RelMonad D J R, R')
  : is_z_isomorphism(C := [C, D]) (nat_trans_RelMonadMor α) z_iso(C := category_RelMonad D J) R R'.
Show proof.
  intro T.
  exists α.
  exact (is_relmonadmor_z_iso_from_is_z_iso D J α T).

Definition relmonadmor_z_iso_first_z_iso {C : precategory_data} (D : category)
  (J : functor C D)(R R': RelMonad J)
  : z_iso(C := category_RelMonad D J) R R' α : R_functor R R_functor R', is_z_isomorphism(C := [C, D]) α.
Show proof.
  unfold z_iso.
Abort.

Definition pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso {C : precategory_data} {D : category}
   (H: is_univalent D) (J : functor C D) {R R': RelMonad J} :
  z_iso(C := category_RelMonad D J) R R' -> pr1 (pr1 R) = pr1 (pr1 R').
Proof.
  intro α.
  change (pr1 (pr1 (R_functor R)) = pr1 (pr1 (R_functor R'))).
  do 2 apply maponpaths.
  set (H1 := make_weq _ ((is_univalent_functor_category C D H) (R_functor R) (R_functor R'))).
  apply H1.
  apply (z_iso_from_is_relmonadmor_z_iso D J α).

Lemma pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso_idtoiso_aux {C : precategory_data} (D : category) (J : functor C D) {R R': RelMonad J}
      (p: @paths (category_RelMonad D J) R R'):
  base_paths (pr1 (R_functor R)) (pr1 (R_functor R'))
             (base_paths (R_functor R) (R_functor R') (maponpaths R_functor p)) =
  base_paths (pr1 R) (pr1 R') (base_paths R R' p).
Show proof.
  unfold base_paths.
  etrans.
  { apply maponpaths.
    apply (maponpathscomp (@R_functor C D J) (@functor_data_from_functor C D)).
  }
  etrans.
  { apply (maponpathscomp ((functor_data_from_functor C D R_functor)%functions) (@functor_on_objects C D)). }
  etrans.
  2: { apply pathsinv0.
       apply (maponpathscomp (@RelMonad_data_from_RelMonad C D J) (@RelMonad_ob C D J)).
  }
  apply idpath.

Lemma pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso_idtoiso {C : precategory_data} {D : category}
      (H: is_univalent D) (J : functor C D) {R R': RelMonad J}
      (p: @paths (category_RelMonad D J) R R'):
  pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso H J (idtoiso p) =
  base_paths (pr1 R) (pr1 R') (base_paths R R' p).
Show proof.

Lemma transport_of_relmonad_η_is_pointwise {C : precategory_data} {D : precategory}
      (J : functor C D) (F0 G0 : ob C -> ob D)
      (F1 : a : ob C, J a --> F0 a)
      (gamma : F0 = G0 )
      (c: ob C) :
  transportf (fun x : ob C -> ob D => a, D J a, x a) gamma F1 c =
  transportf (fun d: ob D => D J c, d) (toforallpaths (λ _ : ob C, D) F0 G0 gamma c) (F1 c).
Show proof.
  induction gamma.
  apply idpath.

Lemma transport_of_relmonad_bind_is_pointwise {C : precategory_data} {D : precategory}
      (J : functor C D) (F0 G0 : ob C -> ob D)
      (F1 : a b : ob C , D J a, F0 b D F0 a, F0 b)
      (gamma : F0 = G0 )
      (c d : ob C) (f : J c --> G0 d) :
  transportf (fun x : ob C -> ob D => a b : ob C , D J a, x b D x a, x b) gamma F1 c d f =
  double_transport (toforallpaths (λ _ : ob C, D) F0 G0 gamma c)
                   (toforallpaths (λ _ : ob C, D) F0 G0 gamma d)
                   (F1 c d (transportb (fun x : ob D => D J c, x)
                                       (toforallpaths (λ _ : ob C, D) F0 G0 gamma d) f)).
Show proof.
  induction gamma.
  apply idpath.

a preparation for the following lemma
Lemma isotoid_functorcat_pointwise_aux (C : precategory_data) (D : category)
      (H : is_univalent D) (F G : ob [C, D, D]) (p: F = G) (c: C) :
  let α := idtoiso p in
   toforallpaths (fun _ : ob C => ob D) (pr1 (pr1 F)) (pr1 (pr1 G))
    (maponpaths pr1
       (maponpaths pr1
          (isotoid (functor_category C D)
                   (is_univalent_functor_category C D H) α))) c
   = isotoid D H
             (functor_z_iso_pointwise_if_z_iso C D D F G α (pr2 α) c).
Show proof.
  induction p.
  cbn delta in *.
  unfold functor_z_iso_pointwise_if_z_iso.
  rewrite isotoid_idtoiso.
  unfold idtoiso.
  simpl.
  apply idtoiso_inj; try assumption.
  rewrite idtoiso_isotoid.
  simpl.
  apply z_iso_eq.
  apply idpath.

general lemma on univalence of functor category

Lemma isotoid_functorcat_pointwise (C : precategory_data) (D : category) (H : is_univalent D)
      (F G : ob [C, D, D]) (α: z_iso F G) (c: C) :
   toforallpaths (fun _ : ob C => ob D) (pr1 (pr1 F)) (pr1 (pr1 G))
    (maponpaths pr1
       (maponpaths pr1
          (isotoid (functor_category C D)
                   (is_univalent_functor_category C D H) α))) c
   = isotoid D H
             (functor_z_iso_pointwise_if_z_iso' C D F G α c).
Show proof.
  assert (aux := isotoid_functorcat_pointwise_aux C D H F G
                      (isotoid (functor_category C D) (is_univalent_functor_category C D H) α)).

  rewrite (idtoiso_isotoid [C, D] _ ) in aux.
  apply aux.

Definition η_relmonadmor_eq_from_relmonadmor_z_iso {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D) {R R': RelMonad J}
           (α: z_iso(C := category_RelMonad D J) R R')
  : transportf (fun x : ob C -> ob D => c, D J c, x c)
               (pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso H J α) (pr1 (pr2 (pr1 R))) =
    pr1 (pr2 (pr1 R')).
Show proof.
  apply funextsec; intro c.
  rewrite transport_of_relmonad_η_is_pointwise.
  unfold pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso.
  simpl.
  rewrite <- idtoiso_postcompose.
  simpl.
  change (pr1 (pr2 (pr1 R')) c) with (r_eta R' c).
  change (pr1 (pr2 (pr1 R)) c) with (r_eta R c).
  intermediate_path (r_eta R c · (pr1 (pr1 α): RelMonadMor_data _ _) c).
  2: { set (X := RelMonadMor_axioms_from_RelMonadMor (pr1 α)).
       exact (pr1 X c).
  }
  apply cancel_precomposition.
  set (isor := z_iso_from_is_relmonadmor_z_iso D J α).
  set (isor_p := functor_z_iso_pointwise_if_z_iso' C D _ _ isor c).
  change (pr1 (pr1 α) c) with (pr1 isor_p).
  apply maponpaths.
  unfold precategory_data_from_precategory in isor.
  simpl in isor.
  unfold precategory_data_from_precategory; simpl.
  fold isor.
  intermediate_path (idtoiso (isotoid _ H isor_p)).
  2: { apply idtoiso_isotoid. }
  apply maponpaths.
  change (functor_eq_from_functor_z_iso
             H (R_functor R)
             (R_functor R') isor) with (isotoid _ (is_univalent_functor_category C D H) isor).
  apply (isotoid_functorcat_pointwise C D H (R_functor R) (R_functor R')).

Definition bind_relmonadmor_eq_from_relmonadmor_z_iso {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D) {R R': RelMonad J}
           (α: z_iso(C := category_RelMonad D J) R R')
  : transportf (fun x : ob C -> ob D => c d, D J c, x d D x c, x d)
               (pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso H J α) (pr2 (pr2 (pr1 R))) =
    pr2 (pr2 (pr1 R')).
Show proof.
  apply funextsec; intro c. apply funextsec; intro d. apply funextsec; intro f.
  rewrite transport_of_relmonad_bind_is_pointwise.
  unfold pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso.
  simpl.
  rewrite double_transport_idtoiso.
  rewrite <- assoc.
  set (isor := z_iso_from_is_relmonadmor_z_iso D J α).
  unfold precategory_data_from_precategory in isor.
  simpl in isor.
  unfold precategory_data_from_precategory; simpl.
  fold isor.
  change (functor_eq_from_functor_z_iso
             H (R_functor R)
             (R_functor R') isor) with (isotoid _ (is_univalent_functor_category C D H) isor).
  do 2 rewrite (isotoid_functorcat_pointwise C D H (R_functor R) (R_functor R')).
  do 2 rewrite idtoiso_isotoid.
  change (pr2 (pr2 (pr1 R')) c d f) with (r_bind R' f).
  change (pr2 (pr2 (pr1 R)) c d) with (r_bind(c:=c)(d:=d) R).
  rewrite (transportb_isotoid D H).
  do 2 rewrite <- (z_iso_from_is_relmonadmor_z_iso_inv_p D J α).
  rewrite <- (z_iso_from_is_relmonadmor_z_iso_p D J α).
  assert (aux := α_r_bind (RelMonadMor_axioms_from_RelMonadMor (inv_from_z_iso α)) c d f).
  etrans.
  { apply assoc. }
  etrans.
  { apply cancel_postcomposition.
    apply aux.
  }
  intermediate_path (r_bind R' f · identity _).
  2: { apply id_right. }
  etrans.
  { apply pathsinv0. apply assoc. }
  apply cancel_precomposition.
  assert (aux2 := z_iso_after_z_iso_inv α).
  apply (maponpaths pr1) in aux2.
  apply toforallpaths in aux2.
  apply aux2.

Definition relmonad_eq_from_relmonad_z_iso {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D) {R R': RelMonad J}
           (α : z_iso(C := category_RelMonad D J) R R')
  : R = R'.
Show proof.
  apply RelMonad_eq.
  - exact D.
  - set (Hob := pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso H J α).
    apply (total2_paths_f Hob).
    apply dirprodeq.
    + intermediate_path (transportf (λ F : C D, c : C, D J c, F c ) Hob
                                    (pr1 (pr2 (pr1 R)))).
      { apply pathsinv0. apply (transport_map (fun F => dirprod_pr1(X := c : C, D J c, F c )(Y := c d : C, D J c, F d D F c, F d ))). }
      apply (η_relmonadmor_eq_from_relmonadmor_z_iso H J α).
    + intermediate_path (transportf (λ F : C D, c d : C, D J c, F d D F c, F d ) Hob
                                    (pr2 (pr2 (pr1 R)))).
      { apply pathsinv0. apply (transport_map (fun F => dirprod_pr2(X := c : C, D J c, F c )(Y := c d : C, D J c, F d D F c, F d ))). }
      apply (bind_relmonadmor_eq_from_relmonadmor_z_iso H J α).


Definition relmonad_eq_from_relmonad_z_iso_obsolete {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D) {R R': RelMonad J}
           (α : z_iso(C := category_RelMonad D J) R R')
  : R = R'.
Show proof.
  set (Hob := pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso H J α).
  assert (η_eq := η_relmonadmor_eq_from_relmonadmor_z_iso H J α).
  assert (bind_eq := bind_relmonadmor_eq_from_relmonadmor_z_iso H J α).
  fold Hob in η_eq, bind_eq.
  induction R as [[F [e b]] a].
  induction R' as [[F' [e' b']] a'].
  simpl in Hob.
  induction Hob.
  cbn in η_eq, bind_eq.
  apply RelMonad_eq.
  + exact D.
  + simpl.
    apply maponpaths.
    apply pathsdirprod; assumption.

Lemma relmonad_eq_from_relmonad_z_iso_idtoiso {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D) {R R': RelMonad J} (p: R = R') :
  relmonad_eq_from_relmonad_z_iso H J (idtoiso(C := category_RelMonad D J) p) = p.
Show proof.
  apply relmonad_eq_eq_from_relmonad_ob_eq.
  - apply D.
  - unfold relmonad_eq_from_relmonad_z_iso.
    unfold RelMonad_eq.
    rewrite base_total2_paths.
    rewrite base_total2_paths.
    apply pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso_idtoiso.

Lemma idtoiso_relmonad_eq_from_relmonad_z_iso {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D) {R R': RelMonad J}
           (α : z_iso(C := category_RelMonad D J) R R') :
        idtoiso(C := category_RelMonad D J) (relmonad_eq_from_relmonad_z_iso H J α) = α.
Show proof.
  apply (z_iso_eq(C := category_RelMonad D J)).
  apply RelMonadMor_equiv.
  - apply D.
  -
    apply funextsec; intro c.
    etrans.
    { apply z_iso_from_is_relmonadmor_z_iso_p. }
    rewrite (z_iso_from_is_relmonadmor_z_iso_idtoiso D J (relmonad_eq_from_relmonad_z_iso H J α)).
    rewrite idtoiso_functorcat_compute_pointwise'.
    unfold relmonad_eq_from_relmonad_z_iso.
    unfold RelMonad_eq.
    rewrite pr1_pr1_relmonadmor_eq_from_relmonadmor_z_iso_idtoiso_aux.
    rewrite base_total2_paths.
    rewrite base_total2_paths.
    intermediate_path (pr1 (idtoiso
     (isotoid D H (functor_z_iso_pointwise_if_z_iso' C D _ _ (z_iso_from_is_relmonadmor_z_iso D J α) c)))).
    2: { rewrite idtoiso_isotoid.
         apply idpath.
    }
    apply maponpaths.
    apply maponpaths.
    apply isotoid_functorcat_pointwise.

Definition relmonadmor_idtoiso {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D)(R R': RelMonad J) :
  (R = R') z_iso(C := category_RelMonad D J) R R'.
Show proof.
  apply (make_weq (@idtoiso (category_RelMonad D J) R R')).
  use isweq_iso.
  - exact (relmonad_eq_from_relmonad_z_iso H J).
  - intro p. exact (relmonad_eq_from_relmonad_z_iso_idtoiso H J p).
  - intro α. exact (idtoiso_relmonad_eq_from_relmonad_z_iso H J α).

Lemma isweq_idtoiso_RelMonad {C : precategory_data} {D : category}
           (H: is_univalent D) (J : functor C D)(R R': RelMonad J)
  : isweq (@idtoiso (category_RelMonad D J) R R').
Show proof.
  apply (isweqhomot (relmonadmor_idtoiso H J R R')).
  - intro p. induction p.
    apply idpath.
  - apply (pr2 _ ).

Lemma is_univalent_RelMonad {C : precategory_data} {D : category}
      (H: is_univalent D) (J : functor C D)
  : is_univalent (category_RelMonad D J).
Show proof.
  intros R R'.
  apply isweq_idtoiso_RelMonad.
  exact H.

End RelativeMonads_saturated.

Section RelAdjunctionWithKleisliCategory.
The canonical relative adjunction between J and the Kleisli category of a J-relative monad
This is the obvious generalization of the material in UniMath.CategoryTheory.Monads.KleisliCategory.

Definition Left_rKleisli_functor_data {C: precategory_data} {D : precategory}
             {J : functor_data C D} (R: RelMonad J) :
  functor_data C (Kleisli_precat R).
Show proof.
  use make_functor_data.
  - apply idfun.
  - intros a b f; unfold idfun.
    exact (#J f · (r_eta R) b).

Lemma Left_rKleisli_is_functor {C: precategory_data} {D : precategory}
      {J : functor C D} (R: RelMonad J) :
  is_functor (Left_rKleisli_functor_data R).
Show proof.
  split.
  - intro a.
    unfold Left_rKleisli_functor_data; simpl.
    rewrite functor_id.
    apply id_left.
  - intros a b c f g.
    unfold Left_rKleisli_functor_data; simpl.
    unfold compose at 3; simpl.
    rewrite functor_comp.
    do 2 (rewrite <- assoc).
    apply cancel_precomposition.
    apply pathsinv0.
    apply (r_eta_r_bind R).

Definition Left_rKleisli_functor {C: precategory_data} {D : precategory}
      {J : functor C D} (R: RelMonad J) :
  functor C (Kleisli_precat R)
  := (Left_rKleisli_functor_data R,,Left_rKleisli_is_functor R).

Definition Right_rKleisli_functor_data {C: precategory_data} {D : precategory}
      {J : functor_data C D} (R: RelMonad J):
  functor_data (Kleisli_precat R) D.
Show proof.
  use make_functor_data.
  - exact R.
  - intros a b.
    apply r_bind.

Lemma Right_rKleisli_is_functor {C: precategory_data} {D : precategory}
      {J : functor C D} (R: RelMonad J) :
  is_functor (Right_rKleisli_functor_data R).
Show proof.
  use tpair.
  - intro a.
    unfold Right_rKleisli_functor_data; unfold identity;
    unfold functor_on_morphisms; simpl.
    apply (r_bind_r_eta R).
  - intros a b c f g; simpl.
    apply pathsinv0.
    apply (r_bind_r_bind R).

Definition Right_rKleisli_functor {C: precategory_data} {D : precategory}
      {J : functor C D} (R: RelMonad J) :
  functor (Kleisli_precat R) D
  := (Right_rKleisli_functor_data R,,Right_rKleisli_is_functor R).

Composition of the left and right Kleisli functors is equal to R as a functor

Definition rKleisli_functor_left_right_compose {C: precategory} {D : precategory}
  (hs : has_homsets D) {J : functor C D} (R: RelMonad J) :
  (Left_rKleisli_functor R) (Right_rKleisli_functor R) = R_functor R.
Show proof.
  use functor_eq.
  - exact hs.
  - use functor_data_eq_from_nat_trans.
    + intro a; apply idpath.
    + intros a b f; simpl.
      rewrite id_right.
      rewrite id_left.
      apply idpath.

Showing that these functors are relative adjoints

Definition rKleisli_functors_are_relative_adjoints {C: precategory_data} {D : precategory}
           (hs : has_homsets D) {J : functor C D} (R: RelMonad J) :
  are_relative_adjoints J (Left_rKleisli_functor R) (Right_rKleisli_functor R).
Show proof.
  use tpair.
  - intros a b.
    use tpair.
    + simpl.
      apply idfun.
    + simpl.
      apply idisweq.
  - simpl; split.
    + intros a b f c h.
      unfold compose at 1; simpl.
      rewrite <- assoc.
      apply cancel_precomposition.
      apply (r_eta_r_bind R).
    + intros a b f c k.
      reflexivity.

End RelAdjunctionWithKleisliCategory.