Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Isos

1. Isos in two-sided displayed categories
Definition is_iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           (Hf : is_z_isomorphism f)
           (Hg : is_z_isomorphism g)
           (fg : xy₁ -->[ f ][ g ] xy₂)
  : UU
  := let f_z_iso : z_iso x₁ x₂ := f ,, Hf in
     let g_z_iso : z_iso y₁ y₂ := g ,, Hg in
      (gf : xy₂
             -->[ inv_from_z_iso f_z_iso ][ inv_from_z_iso g_z_iso ]
             xy₁),
     (fg ;;2 gf
      =
      transportb_disp_mor2
        (z_iso_inv_after_z_iso f_z_iso)
        (z_iso_inv_after_z_iso g_z_iso)
        (id_two_disp _))
     ×
     (gf ;;2 fg
      =
      transportb_disp_mor2
        (z_iso_after_z_iso_inv f_z_iso)
        (z_iso_after_z_iso_inv g_z_iso)
        (id_two_disp _)).

Definition iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           (f : z_iso x₁ x₂)
           (g : z_iso y₁ y₂)
           (xy₁ : D x₁ y₁)
           (xy₂ : D x₂ y₂)
  : UU
  := (fg : xy₁ -->[ f ][ g ] xy₂),
     is_iso_twosided_disp (pr2 f) (pr2 g) fg.

Coercion iso_twosided_disp_to_mor
         {C₁ C₂ : category}
         {D : twosided_disp_cat C₁ C₂}
         {x₁ x₂ : C₁}
         {y₁ y₂ : C₂}
         {f : z_iso x₁ x₂}
         {g : z_iso y₁ y₂}
         {xy₁ : D x₁ y₁}
         {xy₂ : D x₂ y₂}
         (fg : iso_twosided_disp f g xy₁ xy₂)
  : xy₁ -->[ f ][ g ] xy₂
  := pr1 fg.

2. Accessors for isos
Definition iso_inv_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           {Hf : is_z_isomorphism f}
           {Hg : is_z_isomorphism g}
           {fg : xy₁ -->[ f ][ g ] xy₂}
           (Hfg : is_iso_twosided_disp Hf Hg fg)
  : xy₂
    -->[ inv_from_z_iso (f ,, Hf) ][ inv_from_z_iso (g ,, Hg) ]
    xy₁
  := pr1 Hfg.

Definition inv_after_iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           {Hf : is_z_isomorphism f}
           {Hg : is_z_isomorphism g}
           {fg : xy₁ -->[ f ][ g ] xy₂}
           (Hfg : is_iso_twosided_disp Hf Hg fg)
  : fg ;;2 iso_inv_twosided_disp Hfg
    =
    transportb_disp_mor2
      (z_iso_inv_after_z_iso (f ,, Hf))
      (z_iso_inv_after_z_iso (g ,, Hg))
      (id_two_disp _)
  := pr12 Hfg.

Definition iso_after_inv_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           {Hf : is_z_isomorphism f}
           {Hg : is_z_isomorphism g}
           {fg : xy₁ -->[ f ][ g ] xy₂}
           (Hfg : is_iso_twosided_disp Hf Hg fg)
  : iso_inv_twosided_disp Hfg ;;2 fg
    =
    transportb_disp_mor2
      (z_iso_after_z_iso_inv (f ,, Hf))
      (z_iso_after_z_iso_inv (g ,, Hg))
      (id_two_disp _)
  := pr22 Hfg.

Definition make_iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {f : z_iso x₁ x₂}
           {g : z_iso y₁ y₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           (fg : xy₁ -->[ f ][ g ] xy₂)
           (Hfg : is_iso_twosided_disp (pr2 f) (pr2 g) fg)
  : iso_twosided_disp f g xy₁ xy₂
  := fg ,, Hfg.

3. Derived laws
Definition inv_after_iso_twosided_disp_alt
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           {Hf : is_z_isomorphism f}
           {Hg : is_z_isomorphism g}
           {fg : xy₁ -->[ f ][ g ] xy₂}
           (Hfg : is_iso_twosided_disp Hf Hg fg)
  : id_two_disp _
    =
    transportf_disp_mor2
      (z_iso_inv_after_z_iso (f ,, Hf))
      (z_iso_inv_after_z_iso (g ,, Hg))
      (fg ;;2 iso_inv_twosided_disp Hfg).
Show proof.
  use (@transportf_transpose_right _ (λ z, _ -->[ z ][ _ ] _)).
  use (@transportf_transpose_right _ (λ z, _ -->[ _ ][ z ] _)).
  refine (!_).
  etrans.
  {
    apply inv_after_iso_twosided_disp.
  }
  refine (!_).
  apply twosided_swap_transport.

Definition iso_after_inv_twosided_disp_alt
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           {Hf : is_z_isomorphism f}
           {Hg : is_z_isomorphism g}
           {fg : xy₁ -->[ f ][ g ] xy₂}
           (Hfg : is_iso_twosided_disp Hf Hg fg)
  : id_two_disp _
    =
    transportf_disp_mor2
      (z_iso_after_z_iso_inv (f ,, Hf))
      (z_iso_after_z_iso_inv (g ,, Hg))
      (iso_inv_twosided_disp Hfg ;;2 fg).
Show proof.
  use (@transportf_transpose_right _ (λ z, _ -->[ z ][ _ ] _)).
  use (@transportf_transpose_right _ (λ z, _ -->[ _ ][ z ] _)).
  refine (!_).
  etrans.
  {
    apply iso_after_inv_twosided_disp.
  }
  refine (!_).
  apply twosided_swap_transport.

4. Being an iso is a proposition
Definition isaprop_is_iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x₁ x₂ : C₁}
           {y₁ y₂ : C₂}
           {xy₁ : D x₁ y₁}
           {xy₂ : D x₂ y₂}
           {f : x₁ --> x₂}
           {g : y₁ --> y₂}
           (Hf : is_z_isomorphism f)
           (Hg : is_z_isomorphism g)
           (fg : xy₁ -->[ f ][ g ] xy₂)
  : isaprop (is_iso_twosided_disp Hf Hg fg).
Show proof.
  use invproofirrelevance.
  intros φ φ.
  use subtypePath.
  {
    intro.
    use isapropdirprod ; apply isaset_disp_mor.
  }
  etrans.
  {
    apply id_two_disp_right_alt.
  }
  etrans.
  {
    do 2 apply maponpaths.
    exact (inv_after_iso_twosided_disp_alt φ).
  }
  rewrite two_disp_post_whisker_f.
  rewrite transport_f_f_disp_mor2.
  rewrite assoc_two_disp.
  etrans.
  {
    apply transport_f_f_disp_mor2.
  }
  etrans.
  {
    apply maponpaths.
    apply maponpaths_2.
    apply (iso_after_inv_twosided_disp φ).
  }
  unfold transportb_disp_mor2.
  rewrite two_disp_pre_whisker_f.
  rewrite transport_f_f_disp_mor2.
  rewrite id_two_disp_left.
  unfold transportb_disp_mor2.
  rewrite transport_f_f_disp_mor2.
  unfold iso_inv_twosided_disp.
  apply transportf_disp_mor2_idpath.

Proposition isaset_iso_twosided_disp
            {C₁ C₂ : category}
            {D : twosided_disp_cat C₁ C₂}
            {x₁ x₂ : C₁}
            {y₁ y₂ : C₂}
            (f : z_iso x₁ x₂)
            (g : z_iso y₁ y₂)
            (xy₁ : D x₁ y₁)
            (xy₂ : D x₂ y₂)
  : isaset (iso_twosided_disp f g xy₁ xy₂).
Show proof.
  use isaset_total2.
  - apply isaset_disp_mor.
  - intro.
    apply isasetaprop.
    apply isaprop_is_iso_twosided_disp.

5. The identity iso
Definition id_is_iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x : C₁}
           {y : C₂}
           (xy : D x y)
  : is_iso_twosided_disp (identity_is_z_iso x) (identity_is_z_iso y) (id_two_disp xy).
Show proof.
  simple refine (_ ,, _ ,, _).
  - apply id_two_disp.
  - apply id_two_disp_left.
  - apply id_two_disp_left.

Definition id_iso_twosided_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x : C₁}
           {y : C₂}
           (xy : D x y)
  : iso_twosided_disp (identity_z_iso x) (identity_z_iso y) xy xy.
Show proof.
  use make_iso_twosided_disp.
  - apply id_two_disp.
  - exact (id_is_iso_twosided_disp xy).

6. Equivalence with isos in the corresponding displayed category
Definition iso_twosided_disp_to_z_iso_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x : C₁} {y : C₂}
           {xx yy : D x y}
           (ff : iso_twosided_disp (identity_z_iso x) (identity_z_iso y) xx yy)
  : @z_iso_disp
       _
       (twosided_disp_cat_to_disp_cat _ _ D)
       (x ,, y) (x ,, y)
       (identity_z_iso _)
       xx yy.
Show proof.
  simple refine (_ ,, _ ,, _ ,, _).
  - exact (pr1 ff).
  - exact (iso_inv_twosided_disp (pr2 ff)).
  - abstract
      (refine (iso_after_inv_twosided_disp (pr2 ff) @ _) ;
       cbn ;
       refine (!_) ;
       apply transportb_dirprodeq).
  - abstract
      (refine (inv_after_iso_twosided_disp (pr2 ff) @ _) ;
       cbn ;
       refine (!_) ;
       apply transportb_dirprodeq).

Definition iso_twosided_disp_from_z_iso_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x : C₁} {y : C₂}
           {xx yy : D x y}
           (ff : @z_iso_disp
                    _
                    (twosided_disp_cat_to_disp_cat _ _ D)
                    (x ,, y) (x ,, y)
                    (identity_z_iso _)
                    xx yy)
  : iso_twosided_disp (identity_z_iso x) (identity_z_iso y) xx yy.
Show proof.
  simple refine (_ ,, _ ,, _ ,, _).
  - exact (pr1 ff).
  - exact (inv_mor_disp_from_z_iso ff).
  - abstract
      (refine (inv_mor_after_z_iso_disp ff @ _) ;
       refine (_ @ !twosided_prod_transport _ _ _) ;
       unfold transportb ;
       apply maponpaths_2 ;
       apply isasetdirprod ; apply homset_property).
  - abstract
      (refine (z_iso_disp_after_inv_mor ff @ _) ;
       refine (_ @ !twosided_prod_transport _ _ _) ;
       unfold transportb ;
       apply maponpaths_2 ;
       apply isasetdirprod ; apply homset_property).

Definition iso_twosided_disp_weq_z_iso_disp
           {C₁ C₂ : category}
           {D : twosided_disp_cat C₁ C₂}
           {x : C₁} {y : C₂}
           (xx yy : D x y)
  : iso_twosided_disp (identity_z_iso x) (identity_z_iso y) xx yy
    
    @z_iso_disp
       _
       (twosided_disp_cat_to_disp_cat _ _ D)
       (x ,, y) (x ,, y)
       (identity_z_iso _)
       xx yy.
Show proof.
  use weq_iso.
  - exact iso_twosided_disp_to_z_iso_disp.
  - exact iso_twosided_disp_from_z_iso_disp.
  - abstract
      (intros f ;
       use subtypePath ; [ intro ; apply isaprop_is_iso_twosided_disp | ] ;
       apply idpath).
  - abstract
      (intros f ;
       use subtypePath ; [ intro ; apply isaprop_is_z_iso_disp | ] ;
       apply idpath).