Library UniMath.CategoryTheory.categories.rings
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Section def_ring_precategory.
Definition ring_fun_space (A B : ring) : hSet := make_hSet (ringfun A B) (isasetrigfun A B).
Definition ring_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) ring (λ A B : ring, ring_fun_space A B).
Definition ring_precategory_data : precategory_data :=
make_precategory_data
ring_precategory_ob_mor (λ (X : ring), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : ring) (f : ringfun X Y) (g : ringfun Y Z) => rigfuncomp f g).
Local Lemma ring_id_left (X Y : ring) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Show proof.
Opaque ring_id_left.
Local Lemma ring_id_right (X Y : ring) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Show proof.
Opaque ring_id_right.
Local Lemma ring_assoc (X Y Z W : ring) (f : ringfun X Y) (g : ringfun Y Z) (h : ringfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Show proof.
Opaque ring_assoc.
Lemma is_precategory_ring_precategory_data : is_precategory ring_precategory_data.
Show proof.
Definition ring_precategory : precategory :=
make_precategory ring_precategory_data is_precategory_ring_precategory_data.
Lemma has_homsets_ring_precategory : has_homsets ring_precategory.
Show proof.
End def_ring_precategory.
Definition ring_fun_space (A B : ring) : hSet := make_hSet (ringfun A B) (isasetrigfun A B).
Definition ring_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) ring (λ A B : ring, ring_fun_space A B).
Definition ring_precategory_data : precategory_data :=
make_precategory_data
ring_precategory_ob_mor (λ (X : ring), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : ring) (f : ringfun X Y) (g : ringfun Y Z) => rigfuncomp f g).
Local Lemma ring_id_left (X Y : ring) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Show proof.
Opaque ring_id_left.
Local Lemma ring_id_right (X Y : ring) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Show proof.
Opaque ring_id_right.
Local Lemma ring_assoc (X Y Z W : ring) (f : ringfun X Y) (g : ringfun Y Z) (h : ringfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Show proof.
Opaque ring_assoc.
Lemma is_precategory_ring_precategory_data : is_precategory ring_precategory_data.
Show proof.
use make_is_precategory_one_assoc.
- intros a b f. use ring_id_left.
- intros a b f. use ring_id_right.
- intros a b c d f g h. use ring_assoc.
- intros a b f. use ring_id_left.
- intros a b f. use ring_id_right.
- intros a b c d f g h. use ring_assoc.
Definition ring_precategory : precategory :=
make_precategory ring_precategory_data is_precategory_ring_precategory_data.
Lemma has_homsets_ring_precategory : has_homsets ring_precategory.
Show proof.
End def_ring_precategory.
Section def_ring_category.
Definition ring_category : category := make_category _ has_homsets_ring_precategory.
Definition ring_category : category := make_category _ has_homsets_ring_precategory.
Lemma ring_iso_is_equiv (A B : ob ring_category) (f : z_iso A B) : isweq (pr1 (pr1 f)).
Show proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_z_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (z_iso_inv_after_z_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (z_iso_after_z_iso_inv f)) x).
intros x0. use isapropisrigfun.
Opaque ring_iso_is_equiv.- exact (pr1rigfun _ _ (inv_from_z_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (z_iso_inv_after_z_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (z_iso_after_z_iso_inv f)) x).
intros x0. use isapropisrigfun.
Lemma ring_iso_equiv (X Y : ob ring_category) : z_iso X Y -> ringiso (X : ring) (Y : ring).
Show proof.
intro f.
use make_ringiso.
- exact (make_weq (pr1 (pr1 f)) (ring_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
use make_ringiso.
- exact (make_weq (pr1 (pr1 f)) (ring_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Lemma ring_equiv_is_z_iso (X Y : ob ring_category) (f : ringiso (X : ring) (Y : ring)) :
@is_z_isomorphism ring_category X Y (ringfunconstr (pr2 f)).
Show proof.
exists (ringfunconstr (pr2 (invrigiso f))).
use make_is_inverse_in_precat.
- use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
- use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Opaque ring_equiv_is_z_iso.use make_is_inverse_in_precat.
- use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
- use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Lemma ring_equiv_iso (X Y : ob ring_category) : ringiso (X : ring) (Y : ring) -> z_iso X Y.
Show proof.
Lemma ring_iso_equiv_is_equiv (X Y : ring_category) : isweq (ring_iso_equiv X Y).
Show proof.
use isweq_iso.
- exact (ring_equiv_iso X Y).
- intros x. use z_iso_eq. use rigfun_paths. apply idpath.
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ apply idpath.
Opaque ring_iso_equiv_is_equiv.- exact (ring_equiv_iso X Y).
- intros x. use z_iso_eq. use rigfun_paths. apply idpath.
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ apply idpath.
Definition ring_iso_equiv_weq (X Y : ob ring_category) :
weq (z_iso X Y) (ringiso (X : ring) (Y : ring)).
Show proof.
Lemma ring_equiv_iso_is_equiv (X Y : ob ring_category) : isweq (ring_equiv_iso X Y).
Show proof.
use isweq_iso.
- exact (ring_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ apply idpath.
- intros x. use z_iso_eq. use rigfun_paths. apply idpath.
Opaque ring_equiv_iso_is_equiv.- exact (ring_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ apply idpath.
- intros x. use z_iso_eq. use rigfun_paths. apply idpath.
Definition ring_equiv_weq_iso (X Y : ob ring_category) :
(ringiso (X : ring) (Y : ring)) ≃ (z_iso X Y).
Show proof.
Definition ring_category_isweq (X Y : ob ring_category) : isweq (λ p : X = Y, idtoiso p).
Show proof.
use (@isweqhomot
(X = Y) (z_iso X Y)
(pr1weq (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- apply idpath.
- use proofirrelevance. use isaprop_is_z_isomorphism.
Opaque ring_category_isweq.(X = Y) (z_iso X Y)
(pr1weq (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (ring_univalence X Y) (ring_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- apply idpath.
- use proofirrelevance. use isaprop_is_z_isomorphism.
Definition ring_category_is_univalent : is_univalent ring_category.
Show proof.
Definition ring_univalent_category : univalent_category :=
make_univalent_category ring_category ring_category_is_univalent.
End def_ring_category.