Library UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.Pretopos

The internal language of pretoposes
In other files, we gave several extensions of the biequivalence between categories with finite limits and full DFL comprehension categories. Now we put these extensions together in order to obtain internal language theorems for several classes of toposes. The results are split over several files.
In this file, we consider pretoposes. A pretopos is a category that is extensive and exact. This can be expressed via a local property (i.e., a property on categories that is closed under slicing, see the file `LocalProperty.LocalProperties.v`), and from that we directly obtain the biequivalence. The internal language of this class of toposes is given by extensional type theory with ∑-types, quotient types, and disjoint sum types.
Contents 1. The bicategory of pretoposes 2. Accessors for pretoposes 3. The bicategory of pretopos comprehension categories 4. Accessors for pretopos comprehension categories 5. The biequivalence
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.StrictInitial.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.DisjointBinCoproducts.
Require Import UniMath.CategoryTheory.RegularAndExact.RegularCategory.
Require Import UniMath.CategoryTheory.RegularAndExact.RegularEpi.
Require Import UniMath.CategoryTheory.RegularAndExact.ExactCategory.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.Examples.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatExamples.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty.

Local Open Scope cat.

1. The bicategory of pretoposes

2. Accessors for pretoposes

Definition univ_pretopos
  : UU
  := bicat_of_univ_pretopos.

Coercion pretopos_to_finlim
         (E : univ_pretopos)
  : univ_cat_with_finlim
  := pr1 E.

Definition strict_initial_univ_pretopos
           (E : univ_pretopos)
  : strict_initial_object E
  := pr11 (pr112 E).

Definition bincoproducts_univ_pretopos
           (E : univ_pretopos)
  : BinCoproducts E
  := pr121 (pr112 E).

Definition stable_bincoproducts_univ_pretopos
           (E : univ_pretopos)
  : stable_bincoproducts (bincoproducts_univ_pretopos E)
  := pr221 (pr112 E).

Definition disjoint_bincoproducts_univ_pretopos
           (E : univ_pretopos)
  : disjoint_bincoproducts
      (bincoproducts_univ_pretopos E)
      (strict_initial_univ_pretopos E)
  := pr2 (pr112 E).

Definition is_regular_category_univ_pretopos
           (E : univ_pretopos)
  : is_regular_category E.
Show proof.
  simple refine (_ ,, _ ,, _ ,, _).
  - exact (terminal_univ_cat_with_finlim E).
  - exact (pullbacks_univ_cat_with_finlim E).
  - exact (pr1 (pr121 (pr2 E))).
  - exact (pr2 (pr121 (pr2 E))).

Definition all_internal_eqrel_effective_univ_pretopos
           (E : univ_pretopos)
  : all_internal_eqrel_effective E
  := pr221 (pr2 E).

Definition make_univ_pretopos
           {C : univ_cat_with_finlim}
           (I : strict_initial_object C)
           (BC : BinCoproducts C)
           (HBC₁ : stable_bincoproducts BC)
           (HBC₂ : disjoint_bincoproducts BC I)
           (coeq : coeqs_of_kernel_pair C)
           (stable : regular_epi_pb_stable C)
           (exa : all_internal_eqrel_effective C)
  : univ_pretopos.
Show proof.
  simple refine (C ,, (((_ ,, (_ ,, _)) ,, _) ,, (_ ,, _) ,, _) ,, tt).
  - exact I.
  - exact BC.
  - exact HBC₁.
  - exact HBC₂.
  - exact coeq.
  - exact stable.
  - exact exa.

Definition functor_pretopos
           (E₁ E₂ : univ_pretopos)
  : UU
  := E₁ --> E₂.

Coercion functor_pretopos_to_functor_finlim
         {E₁ E₂ : univ_pretopos}
         (F : functor_pretopos E₁ E₂)
  : functor_finlim E₁ E₂
  := pr1 F.

Definition preserves_initial_functor_pretopos
           {E₁ E₂ : univ_pretopos}
           (F : functor_pretopos E₁ E₂)
  : preserves_initial F
  := pr1 (pr122 F).

Definition preserves_bincoproduct_functor_pretopos
           {E₁ E₂ : univ_pretopos}
           (F : functor_pretopos E₁ E₂)
  : preserves_bincoproduct F
  := pr2 (pr122 F).

Definition preserves_regular_epi_functor_pretopos
           {E₁ E₂ : univ_pretopos}
           (F : functor_pretopos E₁ E₂)
  : preserves_regular_epi F
  := pr1 (pr222 F).

Definition make_functor_pretopos
           {E₁ E₂ : univ_pretopos}
           (F : functor_finlim E₁ E₂)
           (HF₁ : preserves_initial F)
           (HF₂ : preserves_bincoproduct F)
           (HF₃ : preserves_regular_epi F)
  : functor_pretopos E₁ E₂
  := F ,, tt ,, (HF₁ ,, HF₂) ,, (HF₃ ,, tt).

Definition nat_trans_pretopos
           {E₁ E₂ : univ_pretopos}
           (F G : functor_pretopos E₁ E₂)
  : UU
  := F ==> G.

Coercion nat_trans_pretopos_to_nat_trans_finlim
         {E₁ E₂ : univ_pretopos}
         {F G : functor_pretopos E₁ E₂}
         (τ : nat_trans_pretopos F G)
  : nat_trans_finlim F G
  := pr1 τ.

Definition make_nat_trans_pretopos
           {E₁ E₂ : univ_pretopos}
           {F G : functor_pretopos E₁ E₂}
           (τ : F G)
  : nat_trans_pretopos F G
  := make_nat_trans_finlim τ ,, (tt ,, tt).

Proposition nat_trans_pretopos_eq
            {E₁ E₂ : univ_pretopos}
            {F G : functor_pretopos E₁ E₂}
            {τ τ : nat_trans_pretopos F G}
            (p : (x : E₁), τ x = τ x)
  : τ = τ.
Show proof.
  use subtypePath.
  {
    intro.
    use isaproptotal2.
    - intro.
      apply isapropunit.
    - intros.
      apply isapropunit.
  }
  use nat_trans_finlim_eq.
  exact p.

3. The bicategory of pretopos comprehension categories

4. Accessors for pretopos comprehension categories

Definition pretopos_comp_cat
  : UU
  := univ_pretopos_language.

Coercion pretopos_comp_cat_to_dfl_comp_cat
         (C : pretopos_comp_cat)
  : dfl_full_comp_cat
  := pr1 C.

Definition fiberwise_strict_initial_pretopos_comp_cat
           (C : pretopos_comp_cat)
  : fiberwise_cat_property
      strict_initial_local_property
      (pretopos_comp_cat_to_dfl_comp_cat C)
  := local_property_conj_left
       (local_property_sub_left
          (local_property_conj_left
             (pr12 C))).

Definition fiberwise_bincoproduct_pretopos_comp_cat
           (C : pretopos_comp_cat)
  : fiberwise_cat_property
      stable_bincoproducts_local_property
      (pretopos_comp_cat_to_dfl_comp_cat C)
  := local_property_conj_right
       (local_property_sub_left
          (local_property_conj_left
             (pr12 C))).

Definition fiberwise_regular_pretopos_comp_cat
           (C : pretopos_comp_cat)
  : fiberwise_cat_property
      regular_local_property
      (pretopos_comp_cat_to_dfl_comp_cat C)
  := local_property_conj_left (local_property_conj_right (pr12 C)).

Definition fiberwise_effective_eqrel_pretopos_comp_cat
           (C : pretopos_comp_cat)
  : fiberwise_cat_property
      all_eqrel_effective_local_property
      (pretopos_comp_cat_to_dfl_comp_cat C)
  := local_property_conj_right (local_property_conj_right (pr12 C)).

Definition pretopos_comp_cat_functor
           (C₁ C₂ : pretopos_comp_cat)
  : UU
  := C₁ --> C₂.

Coercion pretopos_comp_cat_functor_to_dfl_comp_cat_functor
         {C₁ C₂ : pretopos_comp_cat}
         (F : pretopos_comp_cat_functor C₁ C₂)
  : dfl_full_comp_cat_functor
      (pretopos_comp_cat_to_dfl_comp_cat C₁)
      (pretopos_comp_cat_to_dfl_comp_cat C₂)
  := pr1 F.

Definition fiberwise_strict_initial_pretopos_comp_cat_functor
           {C₁ C₂ : pretopos_comp_cat}
           (F : pretopos_comp_cat_functor C₁ C₂)
  : fiberwise_cat_property_functor
      (pretopos_comp_cat_functor_to_dfl_comp_cat_functor F)
      (fiberwise_strict_initial_pretopos_comp_cat C₁)
      (fiberwise_strict_initial_pretopos_comp_cat C₂)
  := local_property_functor_conj_left
       (local_property_functor_sub_left
          (local_property_functor_conj_left (pr22 F))).

Definition fiberwise_bincoproduct_pretopos_comp_cat_functor
           {C₁ C₂ : pretopos_comp_cat}
           (F : pretopos_comp_cat_functor C₁ C₂)
  : fiberwise_cat_property_functor
      (pretopos_comp_cat_functor_to_dfl_comp_cat_functor F)
      (fiberwise_bincoproduct_pretopos_comp_cat C₁)
      (fiberwise_bincoproduct_pretopos_comp_cat C₂)
  := local_property_functor_conj_right
       (local_property_functor_sub_left
          (local_property_functor_conj_left (pr22 F))).

Definition fiberwise_regular_pretopos_comp_cat_functor
           {C₁ C₂ : pretopos_comp_cat}
           (F : pretopos_comp_cat_functor C₁ C₂)
  : fiberwise_cat_property_functor
      (pretopos_comp_cat_functor_to_dfl_comp_cat_functor F)
      (fiberwise_regular_pretopos_comp_cat C₁)
      (fiberwise_regular_pretopos_comp_cat C₂)
  := local_property_functor_conj_left
       (local_property_functor_conj_right (pr22 F)).

Definition pretopos_comp_cat_nat_trans
           {C₁ C₂ : pretopos_comp_cat}
           (F G : pretopos_comp_cat_functor C₁ C₂)
  : UU
  := F ==> G.

Coercion pretopos_comp_cat_nat_trans_to_dfl_full_comp_cat_nat_trans
         {C₁ C₂ : pretopos_comp_cat}
         {F G : pretopos_comp_cat_functor C₁ C₂}
         (τ : pretopos_comp_cat_nat_trans F G)
  : dfl_full_comp_cat_nat_trans
      (pretopos_comp_cat_functor_to_dfl_comp_cat_functor F)
      (pretopos_comp_cat_functor_to_dfl_comp_cat_functor G)
  := pr1 τ.

5. The biequivalence