Library UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleCat
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.TwoSidedDispCat.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.DisplayedFunctor.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Isos.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.StructuredCospans.
Require Import UniMath.CategoryTheory.limits.pushouts.
Require Import UniMath.CategoryTheory.limits.Preservation.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.DoubleCategories.DoubleCategoryBasics.
Require Import UniMath.Bicategories.DoubleCategories.DoubleFunctor.Basics.
Require Import UniMath.Bicategories.DoubleCategories.DoubleCats.
Local Open Scope cat.
Section StructuredCospansDoubleCat.
Context {A X : univalent_category}
(PX : Pushouts X)
(L : A ⟶ X).
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.TwoSidedDispCat.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.DisplayedFunctor.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Isos.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.StructuredCospans.
Require Import UniMath.CategoryTheory.limits.pushouts.
Require Import UniMath.CategoryTheory.limits.Preservation.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.DoubleCategories.DoubleCategoryBasics.
Require Import UniMath.Bicategories.DoubleCategories.DoubleFunctor.Basics.
Require Import UniMath.Bicategories.DoubleCategories.DoubleCats.
Local Open Scope cat.
Section StructuredCospansDoubleCat.
Context {A X : univalent_category}
(PX : Pushouts X)
(L : A ⟶ X).
1. Horizontal identities
Definition structured_cospans_double_cat_hor_id_data
: hor_id_data (twosided_disp_cat_of_struct_cospans L).
Show proof.
Proposition structured_cospans_double_cat_hor_id_laws
: hor_id_laws structured_cospans_double_cat_hor_id_data.
Show proof.
Definition structured_cospans_double_cat_hor_id
: hor_id (twosided_disp_cat_of_struct_cospans L).
Show proof.
: hor_id_data (twosided_disp_cat_of_struct_cospans L).
Show proof.
Proposition structured_cospans_double_cat_hor_id_laws
: hor_id_laws structured_cospans_double_cat_hor_id_data.
Show proof.
split.
- intros a.
use struct_cospan_sqr_eq ; cbn.
apply functor_id.
- intros a₁ a₂ a₃ f g.
use struct_cospan_sqr_eq ; cbn.
apply functor_comp.
- intros a.
use struct_cospan_sqr_eq ; cbn.
apply functor_id.
- intros a₁ a₂ a₃ f g.
use struct_cospan_sqr_eq ; cbn.
apply functor_comp.
Definition structured_cospans_double_cat_hor_id
: hor_id (twosided_disp_cat_of_struct_cospans L).
Show proof.
use make_hor_id.
- exact structured_cospans_double_cat_hor_id_data.
- exact structured_cospans_double_cat_hor_id_laws.
- exact structured_cospans_double_cat_hor_id_data.
- exact structured_cospans_double_cat_hor_id_laws.
2. Horizontal composition
Definition structured_cospans_double_cat_hor_comp_data
: hor_comp_data (twosided_disp_cat_of_struct_cospans L).
Show proof.
Proposition structured_cospans_double_cat_hor_comp_laws
: hor_comp_laws structured_cospans_double_cat_hor_comp_data.
Show proof.
Definition structured_cospans_double_cat_hor_comp
: hor_comp (twosided_disp_cat_of_struct_cospans L).
Show proof.
: hor_comp_data (twosided_disp_cat_of_struct_cospans L).
Show proof.
use make_hor_comp_data.
- exact (λ a₁ a₂ a₃ s t, comp_struct_cospan L PX s t).
- exact (λ _ _ _ _ _ _ _ _ _ _ _ _ _ s₁ s₂, comp_struct_cospan_mor L PX s₁ s₂).
- exact (λ a₁ a₂ a₃ s t, comp_struct_cospan L PX s t).
- exact (λ _ _ _ _ _ _ _ _ _ _ _ _ _ s₁ s₂, comp_struct_cospan_mor L PX s₁ s₂).
Proposition structured_cospans_double_cat_hor_comp_laws
: hor_comp_laws structured_cospans_double_cat_hor_comp_data.
Show proof.
split.
- intros a₁ a₂ a₃ h₁ h₂.
use struct_cospan_sqr_eq.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ unfold mor_of_comp_struct_cospan_mor.
rewrite PushoutArrow_PushoutIn1 ; cbn.
rewrite id_left, id_right.
apply idpath.
+ unfold mor_of_comp_struct_cospan_mor.
rewrite PushoutArrow_PushoutIn2 ; cbn.
rewrite id_left, id_right.
apply idpath.
- intros.
use struct_cospan_sqr_eq.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
unfold mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn1 ; cbn.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc.
apply idpath.
+ rewrite !assoc.
unfold mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2 ; cbn.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc.
apply idpath.
- intros a₁ a₂ a₃ h₁ h₂.
use struct_cospan_sqr_eq.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ unfold mor_of_comp_struct_cospan_mor.
rewrite PushoutArrow_PushoutIn1 ; cbn.
rewrite id_left, id_right.
apply idpath.
+ unfold mor_of_comp_struct_cospan_mor.
rewrite PushoutArrow_PushoutIn2 ; cbn.
rewrite id_left, id_right.
apply idpath.
- intros.
use struct_cospan_sqr_eq.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
unfold mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn1 ; cbn.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc.
apply idpath.
+ rewrite !assoc.
unfold mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2 ; cbn.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc.
apply idpath.
Definition structured_cospans_double_cat_hor_comp
: hor_comp (twosided_disp_cat_of_struct_cospans L).
Show proof.
use make_hor_comp.
- exact structured_cospans_double_cat_hor_comp_data.
- exact structured_cospans_double_cat_hor_comp_laws.
- exact structured_cospans_double_cat_hor_comp_data.
- exact structured_cospans_double_cat_hor_comp_laws.
3. The unitors and associators
Definition structured_cospans_double_cat_lunitor_data
: double_lunitor_data
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
Proposition structured_cospans_double_cat_lunitor_laws
: double_lunitor_laws structured_cospans_double_cat_lunitor_data.
Show proof.
Definition structured_cospans_double_cat_lunitor
: double_cat_lunitor
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
Definition structured_cospans_double_cat_runitor_data
: double_runitor_data
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
Proposition structured_cospans_double_cat_runitor_laws
: double_runitor_laws structured_cospans_double_cat_runitor_data.
Show proof.
Definition structured_cospans_double_cat_runitor
: double_cat_runitor
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
Definition structured_cospans_double_cat_associator_data
: double_associator_data structured_cospans_double_cat_hor_comp.
Show proof.
Proposition structured_cospans_double_cat_associator_laws
: double_associator_laws structured_cospans_double_cat_associator_data.
Show proof.
Definition structured_cospans_double_cat_associator
: double_cat_associator structured_cospans_double_cat_hor_comp.
Show proof.
: double_lunitor_data
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
intros x y h.
simple refine (_ ,, _).
- exact (struct_cospan_lunitor L PX h).
- use is_iso_twosided_disp_struct_cospan_sqr ; cbn.
apply is_z_iso_struct_cospan_lunitor_mor.
simple refine (_ ,, _).
- exact (struct_cospan_lunitor L PX h).
- use is_iso_twosided_disp_struct_cospan_sqr ; cbn.
apply is_z_iso_struct_cospan_lunitor_mor.
Proposition structured_cospans_double_cat_lunitor_laws
: double_lunitor_laws structured_cospans_double_cat_lunitor_data.
Show proof.
intros x₁ x₂ y₁ y₂ h₁ h₂ v₁ v₂ sq.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- rewrite !assoc.
unfold struct_cospan_lunitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
exact (struct_cospan_sqr_mor_left _ sq).
- rewrite !assoc.
unfold struct_cospan_lunitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn2.
rewrite id_left, id_right.
apply idpath.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- rewrite !assoc.
unfold struct_cospan_lunitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
exact (struct_cospan_sqr_mor_left _ sq).
- rewrite !assoc.
unfold struct_cospan_lunitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn2.
rewrite id_left, id_right.
apply idpath.
Definition structured_cospans_double_cat_lunitor
: double_cat_lunitor
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
use make_double_lunitor.
- exact structured_cospans_double_cat_lunitor_data.
- exact structured_cospans_double_cat_lunitor_laws.
- exact structured_cospans_double_cat_lunitor_data.
- exact structured_cospans_double_cat_lunitor_laws.
Definition structured_cospans_double_cat_runitor_data
: double_runitor_data
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
intros x y h.
simple refine (_ ,, _).
- exact (struct_cospan_runitor L PX h).
- use is_iso_twosided_disp_struct_cospan_sqr ; cbn.
apply is_z_iso_struct_cospan_runitor_mor.
simple refine (_ ,, _).
- exact (struct_cospan_runitor L PX h).
- use is_iso_twosided_disp_struct_cospan_sqr ; cbn.
apply is_z_iso_struct_cospan_runitor_mor.
Proposition structured_cospans_double_cat_runitor_laws
: double_runitor_laws structured_cospans_double_cat_runitor_data.
Show proof.
intros x₁ x₂ y₁ y₂ h₁ h₂ v₁ v₂ sq.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- rewrite !assoc.
unfold struct_cospan_runitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
rewrite id_left, id_right.
apply idpath.
- rewrite !assoc.
unfold struct_cospan_runitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn2.
exact (struct_cospan_sqr_mor_right _ sq).
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- rewrite !assoc.
unfold struct_cospan_runitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
rewrite id_left, id_right.
apply idpath.
- rewrite !assoc.
unfold struct_cospan_runitor_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn2.
exact (struct_cospan_sqr_mor_right _ sq).
Definition structured_cospans_double_cat_runitor
: double_cat_runitor
structured_cospans_double_cat_hor_id
structured_cospans_double_cat_hor_comp.
Show proof.
use make_double_runitor.
- exact structured_cospans_double_cat_runitor_data.
- exact structured_cospans_double_cat_runitor_laws.
- exact structured_cospans_double_cat_runitor_data.
- exact structured_cospans_double_cat_runitor_laws.
Definition structured_cospans_double_cat_associator_data
: double_associator_data structured_cospans_double_cat_hor_comp.
Show proof.
intros w x y z h₁ h₂ h₃.
simple refine (_ ,, _).
- exact (struct_cospan_associator L PX h₁ h₂ h₃).
- use is_iso_twosided_disp_struct_cospan_sqr ; cbn.
apply is_z_iso_struct_cospan_associator_mor.
simple refine (_ ,, _).
- exact (struct_cospan_associator L PX h₁ h₂ h₃).
- use is_iso_twosided_disp_struct_cospan_sqr ; cbn.
apply is_z_iso_struct_cospan_associator_mor.
Proposition structured_cospans_double_cat_associator_laws
: double_associator_laws structured_cospans_double_cat_associator_data.
Show proof.
intros w₁ w₂ x₁ x₂ y₁ y₂ z₁ z₂ h₁ h₂ j₁ j₂ k₁ k₂ vw vx vy vz sq₁ sq₂ sq₃.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- rewrite !assoc.
unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
unfold mor_of_comp_struct_cospan_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
apply idpath.
- rewrite !assoc.
unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
unfold mor_of_comp_struct_cospan_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
rewrite PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn2.
rewrite PushoutArrow_PushoutIn1.
apply idpath.
+ rewrite !assoc.
unfold mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- rewrite !assoc.
unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
unfold mor_of_comp_struct_cospan_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
apply idpath.
- rewrite !assoc.
unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
unfold mor_of_comp_struct_cospan_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
rewrite PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn2.
rewrite PushoutArrow_PushoutIn1.
apply idpath.
+ rewrite !assoc.
unfold mor_of_comp_struct_cospan_mor.
rewrite !PushoutArrow_PushoutIn2.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
Definition structured_cospans_double_cat_associator
: double_cat_associator structured_cospans_double_cat_hor_comp.
Show proof.
use make_double_associator.
- exact structured_cospans_double_cat_associator_data.
- exact structured_cospans_double_cat_associator_laws.
- exact structured_cospans_double_cat_associator_data.
- exact structured_cospans_double_cat_associator_laws.
4. The triangle and pentagon equations
Proposition structured_cospans_double_cat_triangle
: triangle_law
structured_cospans_double_cat_lunitor
structured_cospans_double_cat_runitor
structured_cospans_double_cat_associator.
Show proof.
Proposition structured_cospans_double_cat_pentagon
: pentagon_law structured_cospans_double_cat_associator.
Show proof.
: triangle_law
structured_cospans_double_cat_lunitor
structured_cospans_double_cat_runitor
structured_cospans_double_cat_associator.
Show proof.
intro ; intros.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
rewrite id_left.
unfold struct_cospan_runitor_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
apply id_left.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
unfold struct_cospan_lunitor_mor, struct_cospan_runitor_mor.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
rewrite PushoutSqrCommutes.
apply idpath.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
rewrite !id_left.
apply idpath.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite PushoutArrow_PushoutIn1.
rewrite id_left.
unfold struct_cospan_runitor_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
apply id_left.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
unfold struct_cospan_lunitor_mor, struct_cospan_runitor_mor.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
rewrite PushoutSqrCommutes.
apply idpath.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
rewrite !id_left.
apply idpath.
Proposition structured_cospans_double_cat_pentagon
: pentagon_law structured_cospans_double_cat_associator.
Show proof.
intro ; intros.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite id_left.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
unfold struct_cospan_associator_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
apply idpath.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
unfold struct_cospan_associator_mor.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
refine (!_).
etrans.
{
do 2 apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
etrans.
{
apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
refine (assoc' _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn1.
refine (assoc _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
apply idpath.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
* rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
refine (!_).
rewrite !assoc'.
etrans.
{
do 2 apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
etrans.
{
apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
refine (assoc' _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn1.
refine (assoc _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
* rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
refine (!_).
rewrite !assoc'.
etrans.
{
apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
rewrite id_left.
apply idpath.
use struct_cospan_sqr_eq.
rewrite transportb_disp_mor2_struct_cospan ; cbn.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite id_left.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
unfold struct_cospan_associator_mor.
rewrite !assoc.
rewrite PushoutArrow_PushoutIn1.
apply idpath.
- unfold struct_cospan_associator_mor, mor_of_comp_struct_cospan_mor ; cbn.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
unfold struct_cospan_associator_mor.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
rewrite !assoc'.
rewrite !PushoutArrow_PushoutIn1.
refine (!_).
etrans.
{
do 2 apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
etrans.
{
apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
refine (assoc' _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn1.
refine (assoc _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
apply idpath.
+ rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
use (MorphismsOutofPushoutEqual (isPushout_Pushout (PX _ _ _ _ _))) ; cbn.
* rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
refine (!_).
rewrite !assoc'.
etrans.
{
do 2 apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
etrans.
{
apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn1.
refine (assoc' _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn1.
refine (assoc _ _ _ @ _).
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
* rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
refine (!_).
rewrite !assoc'.
etrans.
{
apply maponpaths.
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
apply idpath.
}
rewrite !assoc.
rewrite !PushoutArrow_PushoutIn2.
rewrite id_left.
apply idpath.
5. The double category of structured cospans
Definition structured_cospans_double_cat
: double_cat.
Show proof.
: double_cat.
Show proof.
use make_double_cat.
- exact A.
- exact (twosided_disp_cat_of_struct_cospans L).
- exact structured_cospans_double_cat_hor_id.
- exact structured_cospans_double_cat_hor_comp.
- exact structured_cospans_double_cat_lunitor.
- exact structured_cospans_double_cat_runitor.
- exact structured_cospans_double_cat_associator.
- exact structured_cospans_double_cat_triangle.
- exact structured_cospans_double_cat_pentagon.
- apply univalent_category_is_univalent.
- use is_univalent_struct_cospans_twosided_disp_cat.
apply univalent_category_is_univalent.
End StructuredCospansDoubleCat.- exact A.
- exact (twosided_disp_cat_of_struct_cospans L).
- exact structured_cospans_double_cat_hor_id.
- exact structured_cospans_double_cat_hor_comp.
- exact structured_cospans_double_cat_lunitor.
- exact structured_cospans_double_cat_runitor.
- exact structured_cospans_double_cat_associator.
- exact structured_cospans_double_cat_triangle.
- exact structured_cospans_double_cat_pentagon.
- apply univalent_category_is_univalent.
- use is_univalent_struct_cospans_twosided_disp_cat.
apply univalent_category_is_univalent.