Library UniMath.Bicategories.PseudoFunctors.Examples.Projection
The projection of the total bicategory of some displayed category to the base
*********************************************************************************
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.Display.StrictPseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.StrictPseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.StrictToPseudo.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Section Projection.
Context {C : bicat}.
Variable (D : disp_bicat C).
Definition strict_pr1_psfunctor_data : strict_psfunctor_data (total_bicat D) C.
Show proof.
Definition strict_pr1_psfunctor_laws : is_strict_psfunctor strict_pr1_psfunctor_data.
Show proof.
Definition strict_pr1_psfunctor : strict_psfunctor (total_bicat D) C.
Show proof.
Definition pr1_psfunctor : psfunctor (total_bicat D) C
:= strict_psfunctor_to_psfunctor_map _ _ strict_pr1_psfunctor.
End Projection.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.Display.StrictPseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.StrictPseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.StrictToPseudo.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Section Projection.
Context {C : bicat}.
Variable (D : disp_bicat C).
Definition strict_pr1_psfunctor_data : strict_psfunctor_data (total_bicat D) C.
Show proof.
use make_strict_psfunctor_data.
- exact pr1.
- exact (λ _ _, pr1).
- exact (λ _ _ _ _, pr1).
- exact (λ a, idpath _).
- exact (λ _ _ _ f g, idpath _).
- exact pr1.
- exact (λ _ _, pr1).
- exact (λ _ _ _ _, pr1).
- exact (λ a, idpath _).
- exact (λ _ _ _ f g, idpath _).
Definition strict_pr1_psfunctor_laws : is_strict_psfunctor strict_pr1_psfunctor_data.
Show proof.
repeat split; intro a; intros; cbn.
- rewrite id2_rwhisker.
rewrite id2_left.
rewrite id2_left.
apply idpath.
- rewrite lwhisker_id2.
rewrite id2_left.
rewrite id2_left.
apply idpath.
- rewrite !lwhisker_id2, !id2_rwhisker.
rewrite !id2_left, !id2_right.
apply idpath.
- rewrite id2_right.
rewrite id2_left.
apply idpath.
- rewrite id2_left.
rewrite id2_right.
apply idpath.
- rewrite id2_rwhisker.
rewrite id2_left.
rewrite id2_left.
apply idpath.
- rewrite lwhisker_id2.
rewrite id2_left.
rewrite id2_left.
apply idpath.
- rewrite !lwhisker_id2, !id2_rwhisker.
rewrite !id2_left, !id2_right.
apply idpath.
- rewrite id2_right.
rewrite id2_left.
apply idpath.
- rewrite id2_left.
rewrite id2_right.
apply idpath.
Definition strict_pr1_psfunctor : strict_psfunctor (total_bicat D) C.
Show proof.
Definition pr1_psfunctor : psfunctor (total_bicat D) C
:= strict_psfunctor_to_psfunctor_map _ _ strict_pr1_psfunctor.
End Projection.