Library UniMath.Bicategories.Transformations.PseudoTransformation
Pseudo transformations and pseudo transformations between pseudofunctors.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.FullSub.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Base.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Map1Cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Map2Cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Identitor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Compositor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.
Local Open Scope cat.
Definition pstrans_data
{C D : bicat}
(F G : psfunctor C D)
: UU.
Show proof.
Definition make_pstrans_data
{C D : bicat}
{F G : psfunctor C D}
(η₁ : ∏ (X : C), F X --> G X)
(η₂ : ∏ (X Y : C) (f : X --> Y), invertible_2cell (η₁ X · #G f) (#F f · η₁ Y))
: pstrans_data F G
:= (η₁ ,, η₂).
Definition pstrans
{C D : bicat}
(F G : psfunctor C D)
: UU
:= psfunctor_bicat C D ⟦F,G⟧.
Definition pscomponent_of
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X : C), F X --> G X
:= pr111 η.
Coercion pscomponent_of : pstrans >-> Funclass.
Definition psnaturality_of
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y : C} (f : X --> Y), invertible_2cell (η X · #G f) (#F f · η Y)
:= pr211 η.
Definition is_pstrans
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans_data F G)
: UU
:= (∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(pr1 η X ◃ ##G α)
• pr2 η _ _ g
=
(pr2 η _ _ f)
• (##F α ▹ pr1 η Y))
×
(∏ (X : C),
(pr1 η X ◃ psfunctor_id G X)
• pr2 η _ _ (id₁ X)
=
(runitor (pr1 η X))
• linvunitor (pr1 η X)
• (psfunctor_id F X ▹ pr1 η X))
×
(∏ (X Y Z : C) (f : X --> Y) (g : Y --> Z),
(pr1 η X ◃ psfunctor_comp G f g)
• pr2 η _ _ (f · g)
=
(lassociator (pr1 η X) (#G f) (#G g))
• (pr2 η _ _ f ▹ (#G g))
• rassociator (#F f) (pr1 η Y) (#G g)
• (#F f ◃ pr2 η _ _ g)
• lassociator (#F f) (#F g) (pr1 η Z)
• (psfunctor_comp F f g ▹ pr1 η Z)).
Definition make_pstrans
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans_data F G)
(Hη : is_pstrans η)
: pstrans F G.
Show proof.
Definition psnaturality_natural
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(η X ◃ ##G α)
• psnaturality_of η g
=
(psnaturality_of η f)
• (##F α ▹ η Y)
:= pr121 η.
Definition psnaturality_inv_natural
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(psnaturality_of η f)^-1
• (η X ◃ ##G α)
=
(##F α ▹ η Y)
• (psnaturality_of η g)^-1.
Show proof.
Definition pstrans_id
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X : C),
(η X ◃ psfunctor_id G X)
• psnaturality_of η (id₁ X)
=
(runitor (η X))
• linvunitor (η X)
• (psfunctor_id F X ▹ η X)
:= pr122(pr1 η).
Definition pstrans_comp
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y Z : C} (f : X --> Y) (g : Y --> Z),
(η X ◃ psfunctor_comp G f g)
• psnaturality_of η (f · g)
=
(lassociator (η X) (#G f) (#G g))
• (psnaturality_of η f ▹ (#G g))
• rassociator (#F f) (η Y) (#G g)
• (#F f ◃ psnaturality_of η g)
• lassociator (#F f) (#F g) (η Z)
• (psfunctor_comp F f g ▹ η Z)
:= pr222(pr1 η).
Definition pstrans_id_alt
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X : C),
cell_from_invertible_2cell (psnaturality_of η (id₁ X))
=
(η X ◃ (psfunctor_id G X)^-1)
• runitor (η X)
• linvunitor (η X)
• (psfunctor_id F X ▹ η X).
Show proof.
Proposition pstrans_id_inv
{B₁ B₂ : bicat}
{F G : psfunctor B₁ B₂}
(τ : pstrans F G)
(x : B₁)
: (psnaturality_of τ (id₁ x))^-1 • (τ x ◃ (psfunctor_id G x)^-1)
=
((psfunctor_id F x)^-1 ▹ τ x) • lunitor _ • rinvunitor _.
Show proof.
Proposition pstrans_id_inv_alt
{B₁ B₂ : bicat}
{F G : psfunctor B₁ B₂}
(τ : pstrans F G)
(x : B₁)
: (psfunctor_id F x ▹ τ x) • (psnaturality_of τ (id₁ x))^-1
=
lunitor _ • rinvunitor _ • (τ x ◃ psfunctor_id G x).
Show proof.
Definition pstrans_comp_alt
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y Z : C} (f : X --> Y) (g : Y --> Z),
cell_from_invertible_2cell (psnaturality_of η (f · g))
=
(η X ◃ (psfunctor_comp G f g)^-1)
• lassociator (η X) (#G f) (#G g)
• (psnaturality_of η f ▹ (#G g))
• rassociator (#F f) (η Y) (#G g)
• (#F f ◃ psnaturality_of η g)
• lassociator (#F f) (#F g) (η Z)
• (psfunctor_comp F f g ▹ η Z).
Show proof.
Definition pstrans_inv_comp_alt
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y Z : C} (f : X --> Y) (g : Y --> Z),
(psnaturality_of η (f · g))^-1
=
((psfunctor_comp F f g)^-1 ▹ η Z)
• rassociator (#F f) (#F g) (η Z)
• (#F f ◃ ((psnaturality_of η g)^-1))
• lassociator (#F f) (η Y) (#G g)
• ((psnaturality_of η f)^-1 ▹ (#G g))
• (rassociator (η X) (#G f) (#G g))
• (η X ◃ (psfunctor_comp G f g)).
Show proof.
Definition id_pstrans
{C D : bicat}
(F : psfunctor C D)
: pstrans F F
:= id₁ F.
Definition comp_pstrans
{C D : bicat}
{F₁ F₂ F₃ : psfunctor C D}
(σ₁ : pstrans F₁ F₂) (σ₂ : pstrans F₂ F₃)
: pstrans F₁ F₃
:= σ₁ · σ₂.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.FullSub.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Base.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Map1Cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Map2Cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Identitor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.Compositor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.
Local Open Scope cat.
Definition pstrans_data
{C D : bicat}
(F G : psfunctor C D)
: UU.
Show proof.
Definition make_pstrans_data
{C D : bicat}
{F G : psfunctor C D}
(η₁ : ∏ (X : C), F X --> G X)
(η₂ : ∏ (X Y : C) (f : X --> Y), invertible_2cell (η₁ X · #G f) (#F f · η₁ Y))
: pstrans_data F G
:= (η₁ ,, η₂).
Definition pstrans
{C D : bicat}
(F G : psfunctor C D)
: UU
:= psfunctor_bicat C D ⟦F,G⟧.
Definition pscomponent_of
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X : C), F X --> G X
:= pr111 η.
Coercion pscomponent_of : pstrans >-> Funclass.
Definition psnaturality_of
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y : C} (f : X --> Y), invertible_2cell (η X · #G f) (#F f · η Y)
:= pr211 η.
Definition is_pstrans
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans_data F G)
: UU
:= (∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(pr1 η X ◃ ##G α)
• pr2 η _ _ g
=
(pr2 η _ _ f)
• (##F α ▹ pr1 η Y))
×
(∏ (X : C),
(pr1 η X ◃ psfunctor_id G X)
• pr2 η _ _ (id₁ X)
=
(runitor (pr1 η X))
• linvunitor (pr1 η X)
• (psfunctor_id F X ▹ pr1 η X))
×
(∏ (X Y Z : C) (f : X --> Y) (g : Y --> Z),
(pr1 η X ◃ psfunctor_comp G f g)
• pr2 η _ _ (f · g)
=
(lassociator (pr1 η X) (#G f) (#G g))
• (pr2 η _ _ f ▹ (#G g))
• rassociator (#F f) (pr1 η Y) (#G g)
• (#F f ◃ pr2 η _ _ g)
• lassociator (#F f) (#F g) (pr1 η Z)
• (psfunctor_comp F f g ▹ pr1 η Z)).
Definition make_pstrans
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans_data F G)
(Hη : is_pstrans η)
: pstrans F G.
Show proof.
Definition psnaturality_natural
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(η X ◃ ##G α)
• psnaturality_of η g
=
(psnaturality_of η f)
• (##F α ▹ η Y)
:= pr121 η.
Definition psnaturality_inv_natural
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(psnaturality_of η f)^-1
• (η X ◃ ##G α)
=
(##F α ▹ η Y)
• (psnaturality_of η g)^-1.
Show proof.
intros X Y f g α.
use vcomp_move_L_Mp.
{ is_iso. }
etrans.
{
apply vassocl.
}
use vcomp_move_R_pM.
{ is_iso. }
cbn.
exact (psnaturality_natural η X Y f g α).
use vcomp_move_L_Mp.
{ is_iso. }
etrans.
{
apply vassocl.
}
use vcomp_move_R_pM.
{ is_iso. }
cbn.
exact (psnaturality_natural η X Y f g α).
Definition pstrans_id
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X : C),
(η X ◃ psfunctor_id G X)
• psnaturality_of η (id₁ X)
=
(runitor (η X))
• linvunitor (η X)
• (psfunctor_id F X ▹ η X)
:= pr122(pr1 η).
Definition pstrans_comp
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y Z : C} (f : X --> Y) (g : Y --> Z),
(η X ◃ psfunctor_comp G f g)
• psnaturality_of η (f · g)
=
(lassociator (η X) (#G f) (#G g))
• (psnaturality_of η f ▹ (#G g))
• rassociator (#F f) (η Y) (#G g)
• (#F f ◃ psnaturality_of η g)
• lassociator (#F f) (#F g) (η Z)
• (psfunctor_comp F f g ▹ η Z)
:= pr222(pr1 η).
Definition pstrans_id_alt
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ (X : C),
cell_from_invertible_2cell (psnaturality_of η (id₁ X))
=
(η X ◃ (psfunctor_id G X)^-1)
• runitor (η X)
• linvunitor (η X)
• (psfunctor_id F X ▹ η X).
Show proof.
intros X.
rewrite !vassocl.
use vcomp_move_L_pM.
{ is_iso. }
cbn.
rewrite !vassocr.
exact (pstrans_id η X).
rewrite !vassocl.
use vcomp_move_L_pM.
{ is_iso. }
cbn.
rewrite !vassocr.
exact (pstrans_id η X).
Proposition pstrans_id_inv
{B₁ B₂ : bicat}
{F G : psfunctor B₁ B₂}
(τ : pstrans F G)
(x : B₁)
: (psnaturality_of τ (id₁ x))^-1 • (τ x ◃ (psfunctor_id G x)^-1)
=
((psfunctor_id F x)^-1 ▹ τ x) • lunitor _ • rinvunitor _.
Show proof.
use vcomp_move_L_pM ; [ is_iso | ].
use vcomp_move_R_Mp ; [ is_iso | ].
use vcomp_move_L_pM; [ is_iso | ].
cbn -[psfunctor_id].
rewrite !vassocr.
exact (!(pstrans_id τ x)).
use vcomp_move_R_Mp ; [ is_iso | ].
use vcomp_move_L_pM; [ is_iso | ].
cbn -[psfunctor_id].
rewrite !vassocr.
exact (!(pstrans_id τ x)).
Proposition pstrans_id_inv_alt
{B₁ B₂ : bicat}
{F G : psfunctor B₁ B₂}
(τ : pstrans F G)
(x : B₁)
: (psfunctor_id F x ▹ τ x) • (psnaturality_of τ (id₁ x))^-1
=
lunitor _ • rinvunitor _ • (τ x ◃ psfunctor_id G x).
Show proof.
use vcomp_move_R_pM ; [ is_iso ; apply property_from_invertible_2cell | ].
rewrite !vassocr.
use vcomp_move_L_Mp ; [ is_iso ; apply property_from_invertible_2cell | ].
cbn -[psfunctor_id].
apply pstrans_id_inv.
rewrite !vassocr.
use vcomp_move_L_Mp ; [ is_iso ; apply property_from_invertible_2cell | ].
cbn -[psfunctor_id].
apply pstrans_id_inv.
Definition pstrans_comp_alt
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y Z : C} (f : X --> Y) (g : Y --> Z),
cell_from_invertible_2cell (psnaturality_of η (f · g))
=
(η X ◃ (psfunctor_comp G f g)^-1)
• lassociator (η X) (#G f) (#G g)
• (psnaturality_of η f ▹ (#G g))
• rassociator (#F f) (η Y) (#G g)
• (#F f ◃ psnaturality_of η g)
• lassociator (#F f) (#F g) (η Z)
• (psfunctor_comp F f g ▹ η Z).
Show proof.
intros X Y Z f g.
rewrite !vassocl.
use vcomp_move_L_pM.
{ is_iso. }
cbn.
rewrite !vassocr.
exact (pstrans_comp η f g).
rewrite !vassocl.
use vcomp_move_L_pM.
{ is_iso. }
cbn.
rewrite !vassocr.
exact (pstrans_comp η f g).
Definition pstrans_inv_comp_alt
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans F G)
: ∏ {X Y Z : C} (f : X --> Y) (g : Y --> Z),
(psnaturality_of η (f · g))^-1
=
((psfunctor_comp F f g)^-1 ▹ η Z)
• rassociator (#F f) (#F g) (η Z)
• (#F f ◃ ((psnaturality_of η g)^-1))
• lassociator (#F f) (η Y) (#G g)
• ((psnaturality_of η f)^-1 ▹ (#G g))
• (rassociator (η X) (#G f) (#G g))
• (η X ◃ (psfunctor_comp G f g)).
Show proof.
intros X Y Z f g.
use vcomp_move_L_pM.
{ is_iso. }
use vcomp_move_R_Mp.
{ is_iso. }
use vcomp_move_L_pM.
{ is_iso. apply (psfunctor_comp G). }
simpl.
rewrite pstrans_comp_alt.
rewrite !vassocl.
reflexivity.
use vcomp_move_L_pM.
{ is_iso. }
use vcomp_move_R_Mp.
{ is_iso. }
use vcomp_move_L_pM.
{ is_iso. apply (psfunctor_comp G). }
simpl.
rewrite pstrans_comp_alt.
rewrite !vassocl.
reflexivity.
Definition id_pstrans
{C D : bicat}
(F : psfunctor C D)
: pstrans F F
:= id₁ F.
Definition comp_pstrans
{C D : bicat}
{F₁ F₂ F₃ : psfunctor C D}
(σ₁ : pstrans F₁ F₂) (σ₂ : pstrans F₂ F₃)
: pstrans F₁ F₃
:= σ₁ · σ₂.
Pseudo adjoint equivalence is pointwise adjoint equivalence
Definition pointwise_adjequiv
{B₁ B₂ : bicat}
{F₁ F₂ : psfunctor B₁ B₂}
(σ : pstrans F₁ F₂)
(Hf : left_adjoint_equivalence σ)
: ∏ (X : B₁), left_adjoint_equivalence (σ X).
Show proof.
Definition pstrans_to_pstrans_data
{B₁ B₂ : bicat}
{F₁ F₂ : psfunctor B₁ B₂}
(α : pstrans F₁ F₂)
: pstrans_data F₁ F₂
:= pr11 α.
Definition pstrans_to_is_pstrans
{B₁ B₂ : bicat}
{F₁ F₂ : psfunctor B₁ B₂}
(α : pstrans F₁ F₂)
: is_pstrans (pstrans_to_pstrans_data α)
:= pr21 α.
{B₁ B₂ : bicat}
{F₁ F₂ : psfunctor B₁ B₂}
(σ : pstrans F₁ F₂)
(Hf : left_adjoint_equivalence σ)
: ∏ (X : B₁), left_adjoint_equivalence (σ X).
Show proof.
intro X.
pose (pr1 (left_adjoint_equivalence_total_disp_weq _ _ Hf)) as t₁.
pose (pr1 (left_adjoint_equivalence_total_disp_weq _ _ t₁)) as t₂.
pose (pr1 (left_adjoint_equivalence_total_disp_weq _ _ t₂)) as t₃.
exact (is_adjequiv_to_all_is_adjequiv _ _ _ t₃ X).
pose (pr1 (left_adjoint_equivalence_total_disp_weq _ _ Hf)) as t₁.
pose (pr1 (left_adjoint_equivalence_total_disp_weq _ _ t₁)) as t₂.
pose (pr1 (left_adjoint_equivalence_total_disp_weq _ _ t₂)) as t₃.
exact (is_adjequiv_to_all_is_adjequiv _ _ _ t₃ X).
Definition pstrans_to_pstrans_data
{B₁ B₂ : bicat}
{F₁ F₂ : psfunctor B₁ B₂}
(α : pstrans F₁ F₂)
: pstrans_data F₁ F₂
:= pr11 α.
Definition pstrans_to_is_pstrans
{B₁ B₂ : bicat}
{F₁ F₂ : psfunctor B₁ B₂}
(α : pstrans F₁ F₂)
: is_pstrans (pstrans_to_pstrans_data α)
:= pr21 α.
A pointwise adjoint equivalence is an adjoint equivalence
Section PointwiseAdjequivIsAdjequiv.
Context {B₁ B₂ : bicat}
(HB₂ : is_univalent_2 B₂)
{F₁ F₂ : psfunctor B₁ B₂}
(σ : pstrans F₁ F₂)
(Hf : ∏ (x : B₁), left_adjoint_equivalence (σ x)).
Definition pointwise_adjequiv_to_adjequiv_base
: left_adjoint_equivalence (pr111 σ).
Show proof.
Definition pointwise_adjequiv_to_adjequiv_1cell
: left_adjoint_equivalence (pr11 σ).
Show proof.
Definition pointwise_adjequiv_to_adjequiv_data
: left_adjoint_equivalence (pr1 σ).
Show proof.
Definition pointwise_adjequiv_to_adjequiv
: left_adjoint_equivalence σ.
Show proof.
Context {B₁ B₂ : bicat}
(HB₂ : is_univalent_2 B₂)
{F₁ F₂ : psfunctor B₁ B₂}
(σ : pstrans F₁ F₂)
(Hf : ∏ (x : B₁), left_adjoint_equivalence (σ x)).
Definition pointwise_adjequiv_to_adjequiv_base
: left_adjoint_equivalence (pr111 σ).
Show proof.
Definition pointwise_adjequiv_to_adjequiv_1cell
: left_adjoint_equivalence (pr11 σ).
Show proof.
use (invmap (left_adjoint_equivalence_total_disp_weq _ _)).
simple refine (_ ,, _).
- exact pointwise_adjequiv_to_adjequiv_base.
- apply map1cells_disp_left_adjoint_equivalence.
exact HB₂.
simple refine (_ ,, _).
- exact pointwise_adjequiv_to_adjequiv_base.
- apply map1cells_disp_left_adjoint_equivalence.
exact HB₂.
Definition pointwise_adjequiv_to_adjequiv_data
: left_adjoint_equivalence (pr1 σ).
Show proof.
use (invmap (left_adjoint_equivalence_total_disp_weq _ _)).
simple refine (_ ,, _).
- exact pointwise_adjequiv_to_adjequiv_1cell.
- use (pair_left_adjoint_equivalence
(map2cells_disp_cat B₁ B₂)
(disp_dirprod_bicat
(identitor_disp_cat B₁ B₂)
(compositor_disp_cat B₁ B₂))
(_ ,, pointwise_adjequiv_to_adjequiv_1cell)).
simple refine (_ ,, _).
+ apply map2cells_disp_left_adjequiv.
exact HB₂.
+ use (pair_left_adjoint_equivalence
(identitor_disp_cat B₁ B₂)
(compositor_disp_cat B₁ B₂)).
simple refine (_ ,, _).
* apply identitor_disp_left_adjequiv.
exact HB₂.
* apply compositor_disp_left_adjequiv.
exact HB₂.
simple refine (_ ,, _).
- exact pointwise_adjequiv_to_adjequiv_1cell.
- use (pair_left_adjoint_equivalence
(map2cells_disp_cat B₁ B₂)
(disp_dirprod_bicat
(identitor_disp_cat B₁ B₂)
(compositor_disp_cat B₁ B₂))
(_ ,, pointwise_adjequiv_to_adjequiv_1cell)).
simple refine (_ ,, _).
+ apply map2cells_disp_left_adjequiv.
exact HB₂.
+ use (pair_left_adjoint_equivalence
(identitor_disp_cat B₁ B₂)
(compositor_disp_cat B₁ B₂)).
simple refine (_ ,, _).
* apply identitor_disp_left_adjequiv.
exact HB₂.
* apply compositor_disp_left_adjequiv.
exact HB₂.
Definition pointwise_adjequiv_to_adjequiv
: left_adjoint_equivalence σ.
Show proof.
use (invmap (left_adjoint_equivalence_total_disp_weq _ _)).
simple refine (_ ,, _).
- exact pointwise_adjequiv_to_adjequiv_data.
- apply disp_left_adjoint_equivalence_fullsubbicat.
End PointwiseAdjequivIsAdjequiv.simple refine (_ ,, _).
- exact pointwise_adjequiv_to_adjequiv_data.
- apply disp_left_adjoint_equivalence_fullsubbicat.
Pseudotansformations between psfunctor data
Definition pstrans_data_on_data
{C D : bicat}
(F G : psfunctor_data C D)
: UU.
Show proof.
Definition make_pstrans_data_on_data
{C D : bicat}
{F G : psfunctor_data C D}
(η₁ : ∏ (X : C), F X --> G X)
(η₂ : ∏ (X Y : C) (f : X --> Y), invertible_2cell (η₁ X · #G f) (#F f · η₁ Y))
: pstrans_data_on_data F G
:= (η₁ ,, η₂).
Definition psfunctor_data_on_cells
{C D : bicat}
(F : psfunctor_data C D)
{a b : C}
{f g : a --> b}
(x : f ==> g)
: #F f ==> #F g
:= pr12 F a b f g x.
Section LocalNotation.
Local Notation "'##'" := (PseudoFunctorBicat.psfunctor_on_cells).
Definition is_pstrans_on_data
{C D : bicat}
{F G : psfunctor_data C D}
(η : pstrans_data_on_data F G)
: UU
:= (∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(pr1 η X ◃ ##G α)
• pr2 η _ _ g
=
(pr2 η _ _ f)
• (##F α ▹ pr1 η Y))
×
(∏ (X : C),
(pr1 η X ◃ PseudoFunctorBicat.psfunctor_id G X)
• pr2 η _ _ (id₁ X)
=
(runitor (pr1 η X))
• linvunitor (pr1 η X)
• (PseudoFunctorBicat.psfunctor_id F X ▹ pr1 η X))
×
(∏ (X Y Z : C) (f : X --> Y) (g : Y --> Z),
(pr1 η X ◃ PseudoFunctorBicat.psfunctor_comp G f g)
• pr2 η _ _ (f · g)
=
(lassociator (pr1 η X) (#G f) (#G g))
• (pr2 η _ _ f ▹ (#G g))
• rassociator (#F f) (pr1 η Y) (#G g)
• (#F f ◃ pr2 η _ _ g)
• lassociator (#F f) (#F g) (pr1 η Z)
• (PseudoFunctorBicat.psfunctor_comp F f g ▹ pr1 η Z)).
Definition pstrans_on_data
{C D : bicat}
(F G : psfunctor_data C D)
: UU
:= ∑ (η : pstrans_data_on_data F G), is_pstrans_on_data η.
Definition pstrans_on_data_to_pstrans
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans_on_data (pr1 F) (pr1 G))
: pstrans F G
:= η ,, tt.
End LocalNotation.
{C D : bicat}
(F G : psfunctor_data C D)
: UU.
Show proof.
Definition make_pstrans_data_on_data
{C D : bicat}
{F G : psfunctor_data C D}
(η₁ : ∏ (X : C), F X --> G X)
(η₂ : ∏ (X Y : C) (f : X --> Y), invertible_2cell (η₁ X · #G f) (#F f · η₁ Y))
: pstrans_data_on_data F G
:= (η₁ ,, η₂).
Definition psfunctor_data_on_cells
{C D : bicat}
(F : psfunctor_data C D)
{a b : C}
{f g : a --> b}
(x : f ==> g)
: #F f ==> #F g
:= pr12 F a b f g x.
Section LocalNotation.
Local Notation "'##'" := (PseudoFunctorBicat.psfunctor_on_cells).
Definition is_pstrans_on_data
{C D : bicat}
{F G : psfunctor_data C D}
(η : pstrans_data_on_data F G)
: UU
:= (∏ (X Y : C) (f g : X --> Y) (α : f ==> g),
(pr1 η X ◃ ##G α)
• pr2 η _ _ g
=
(pr2 η _ _ f)
• (##F α ▹ pr1 η Y))
×
(∏ (X : C),
(pr1 η X ◃ PseudoFunctorBicat.psfunctor_id G X)
• pr2 η _ _ (id₁ X)
=
(runitor (pr1 η X))
• linvunitor (pr1 η X)
• (PseudoFunctorBicat.psfunctor_id F X ▹ pr1 η X))
×
(∏ (X Y Z : C) (f : X --> Y) (g : Y --> Z),
(pr1 η X ◃ PseudoFunctorBicat.psfunctor_comp G f g)
• pr2 η _ _ (f · g)
=
(lassociator (pr1 η X) (#G f) (#G g))
• (pr2 η _ _ f ▹ (#G g))
• rassociator (#F f) (pr1 η Y) (#G g)
• (#F f ◃ pr2 η _ _ g)
• lassociator (#F f) (#F g) (pr1 η Z)
• (PseudoFunctorBicat.psfunctor_comp F f g ▹ pr1 η Z)).
Definition pstrans_on_data
{C D : bicat}
(F G : psfunctor_data C D)
: UU
:= ∑ (η : pstrans_data_on_data F G), is_pstrans_on_data η.
Definition pstrans_on_data_to_pstrans
{C D : bicat}
{F G : psfunctor C D}
(η : pstrans_on_data (pr1 F) (pr1 G))
: pstrans F G
:= η ,, tt.
End LocalNotation.