Library UniMath.Bicategories.DisplayedBicats.DispUnivalence
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.AdjointUnique.
Require Export UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Export UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Export UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Section Displayed_Local_Univalence.
Context {C : bicat}.
Variable (D : disp_prebicat C).
Definition disp_idtoiso_2_1
{a b : C}
{f g : C⟦a, b⟧}
(p : f = g)
{aa : D a} {bb : D b}
(ff : aa -->[ f ] bb)
(gg : aa -->[ g ] bb)
(pp : transportf (λ z, _ -->[ z ] _) p ff = gg)
: disp_invertible_2cell (idtoiso_2_1 f g p) ff gg.
Show proof.
Definition disp_univalent_2_1
: UU
:= ∏ (a b : C) (f g : C⟦a,b⟧) (p : f = g) (aa : D a) (bb : D b)
(ff : aa -->[ f ] bb) (gg : aa -->[ g ] bb),
isweq (disp_idtoiso_2_1 p ff gg).
Definition disp_isotoid_2_1
(HD : disp_univalent_2_1)
{a b : C}
{f g : C⟦a, b⟧}
(p : f = g)
{aa : D a} {bb : D b}
(ff : aa -->[ f ] bb)
(gg : aa -->[ g ] bb)
(pp : disp_invertible_2cell (idtoiso_2_1 f g p) ff gg)
: transportf (λ z, _ -->[ z ] _) p ff = gg
:= invmap (make_weq _ (HD a b f g p aa bb ff gg)) pp.
End Displayed_Local_Univalence.
Some laws of `disp_idtoiso_2_1`
Definition disp_1cell_transport_rwhisker
{B : bicat}
{D : disp_bicat B}
{b₁ b₂ b₃ : B}
{h : b₁ --> b₂}
{f : b₂ --> b₃}
{g : b₁ --> b₃}
{α : h · f ==> g}
{bb₁ : D b₁}
{bb₂ : D b₂}
{bb₃ : D b₃}
(ff : bb₂ -->[ f ] bb₃)
(gg : bb₁ -->[ g ] bb₃)
{hh₁ hh₂ : bb₁ -->[ h] bb₂}
(p : hh₁ = hh₂)
(αα : hh₁ ;; ff ==>[ α] gg)
: transportf
(λ (z : bb₁ -->[ h ] bb₂), z ;; ff ==>[ α ] gg)
p
αα
=
transportf
(λ z, _ ==>[ z ] _)
(maponpaths (λ z, z • _) (id2_rwhisker _ _) @ id2_left _)
((disp_idtoiso_2_1 _ (idpath _) _ _ (!p) ▹▹ ff) •• αα).
Show proof.
Definition disp_idtoiso_2_1_inv
{B : bicat}
{D : disp_bicat B}
{b₁ b₂ : B}
{f : b₁ --> b₂}
{bb₁ : D b₁}
{bb₂ : D b₂}
(ff₁ ff₂ : bb₁ -->[ f ] bb₂)
(p : ff₁ = ff₂)
: pr1 (disp_idtoiso_2_1 _ (idpath _) _ _ (!p))
=
disp_inv_cell (disp_idtoiso_2_1 _ (idpath _) _ _ p).
Show proof.
Definition disp_idtoiso_isotoid_2_1
{B : bicat}
{D : disp_bicat B}
(HD_2_1 : disp_univalent_2_1 D)
{b₁ b₂ : B}
{f g : b₁ --> b₂}
(p : f = g)
{bb₁ : D b₁}
{bb₂ : D b₂}
{ff : bb₁ -->[ f ] bb₂}
{gg : bb₁ -->[ g ] bb₂}
(α : disp_invertible_2cell (idtoiso_2_1 f g p) ff gg)
: disp_idtoiso_2_1
_ p ff gg
(disp_isotoid_2_1
_ HD_2_1
p ff gg
α)
=
α.
Show proof.
Definition disp_isotoid_idtoiso_2_1
{B : bicat}
{D : disp_bicat B}
(HD_2_1 : disp_univalent_2_1 D)
{b₁ b₂ : B}
{f g : b₁ --> b₂}
(p : f = g)
{bb₁ : D b₁}
{bb₂ : D b₂}
{ff : bb₁ -->[ f ] bb₂}
{gg : bb₁ -->[ g ] bb₂}
(pp : transportf (λ z, bb₁ -->[ z] bb₂) p ff = gg)
: disp_isotoid_2_1
_ HD_2_1
p ff gg
(disp_idtoiso_2_1
_ p ff gg
pp)
=
pp.
Show proof.
Section Total_Category_Univalent_2_1.
Context {C : bicat}.
Variable (D : disp_bicat C)
(HC : is_univalent_2_1 C)
(HD : disp_univalent_2_1 D).
Local Definition E := (total_bicat D).
Local Definition path_E
{x y : C}
{xx : D x}
{yy : D y}
{f g : C⟦x,y⟧}
(ff : xx -->[ f ] yy)
(gg : xx -->[ g ] yy)
: (f,, ff = g,, gg) ≃ ∑ (p : f = g), transportf _ p ff = gg
:= total2_paths_equiv _ (f ,, ff) (g ,, gg).
Local Definition path_to_iso_E
{x y : C}
{xx : D x}
{yy : D y}
{f g : C⟦x,y⟧}
(ff : xx -->[ f ] yy)
(gg : xx -->[ g ] yy)
: (∑ (p : f = g), transportf _ p ff = gg)
≃
∑ (i : invertible_2cell f g), disp_invertible_2cell i ff gg.
Show proof.
Local Definition idtoiso_alt
{x y : E}
(f g : E⟦x,y⟧)
: (idtoiso_2_1 f g
~
(iso_in_E_weq (pr2 f) (pr2 g))
∘ (path_to_iso_E (pr2 f) (pr2 g))
∘ (path_E (pr2 f) (pr2 g)))%weq.
Show proof.
Definition total_is_univalent_2_1 : is_univalent_2_1 E.
Show proof.
End Total_Category_Univalent_2_1.
Definition fiberwise_local_univalent
{C : bicat}
(D : disp_bicat C)
: UU
:= ∏ (a b : C) (f : C ⟦ a, b ⟧) (aa : D a) (bb : D b)
(ff : aa -->[ f] bb) (gg : aa -->[ f ] bb),
isweq (disp_idtoiso_2_1 D (idpath f) ff gg).
Definition fiberwise_local_univalent_is_univalent_2_1
{C : bicat}
(D : disp_bicat C)
(HD : fiberwise_local_univalent D)
: disp_univalent_2_1 D.
Show proof.
Lemma isaprop_disp_left_adjoint_equivalence
{C : bicat}
{D : disp_bicat C}
{a b : C}
{aa : D a} {bb : D b}
{f : a --> b}
(Hf : left_adjoint_equivalence f)
(ff : aa -->[f] bb)
: is_univalent_2_1 C →
disp_univalent_2_1 D →
isaprop (disp_left_adjoint_equivalence Hf ff).
Show proof.
Section Displayed_Global_Univalence.
Context {C : bicat}.
Variable (D : disp_bicat C).
Definition disp_idtoiso_2_0
{a b : C}
(p : a = b)
(aa : D a) (bb : D b)
(pp : transportf (λ z, D z) p aa = bb)
: disp_adjoint_equivalence (idtoiso_2_0 a b p) aa bb.
Show proof.
Definition disp_univalent_2_0
: UU
:= ∏ (a b : C) (p : a = b) (aa : D a) (bb : D b),
isweq (disp_idtoiso_2_0 p aa bb).
End Displayed_Global_Univalence.
Definition fiberwise_univalent_2_0
{C : bicat}
(D : disp_bicat C)
: UU
:= ∏ (a : C) (aa bb : D a),
isweq (disp_idtoiso_2_0 D (idpath a) aa bb).
Definition fiberwise_univalent_2_0_to_disp_univalent_2_0
{C : bicat}
(D : disp_bicat C)
: fiberwise_univalent_2_0 D → disp_univalent_2_0 D.
Show proof.
Definition disp_isotoid_2_0
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
{x : B}
{xx yy : D x}
(ee : disp_adjoint_equivalence
(internal_adjoint_equivalence_identity x)
xx
yy)
: xx = yy
:= invmap
(make_weq _ (HD_2_0 x x (idpath _) xx yy))
ee.
Definition disp_idtoiso_2_0_isotoid_2_0
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
{x : B}
{xx yy : D x}
(ee : disp_adjoint_equivalence
(internal_adjoint_equivalence_identity x)
xx
yy)
: disp_idtoiso_2_0 D (idpath _) xx yy (disp_isotoid_2_0 HD_2_0 ee)
=
ee.
Show proof.
Definition disp_isotoid_2_0_idtoiso_2_0
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
{x : B}
{xx yy : D x}
(p : xx = yy)
: disp_isotoid_2_0 HD_2_0 (disp_idtoiso_2_0 _ (idpath _) xx yy p) = p.
Show proof.
Definition disp_J_2_0_help_on_paths
{B : bicat}
{D : disp_bicat B}
(P : ∏ (x y : B)
(f : adjoint_equivalence x y)
(xx : D x) (yy : D y),
disp_adjoint_equivalence f xx yy → UU)
(P_id : ∏ (x : B)
(xx : D x),
P x x
(internal_adjoint_equivalence_identity x)
xx xx
(disp_identity_adjoint_equivalence xx))
{x : B}
{xx : D x} {yy : D x}
(p : xx = yy)
: P x x
(internal_adjoint_equivalence_identity x)
xx yy
(disp_idtoiso_2_0 D (idpath x) xx yy p).
Show proof.
Definition disp_J_2_0_help
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
(P : ∏ (x y : B)
(f : adjoint_equivalence x y)
(xx : D x) (yy : D y),
disp_adjoint_equivalence f xx yy → UU)
(P_id : ∏ (x : B)
(xx : D x),
P x x
(internal_adjoint_equivalence_identity x)
xx xx
(disp_identity_adjoint_equivalence xx))
{x : B}
{xx : D x} {yy : D x}
(ff : disp_adjoint_equivalence
(internal_adjoint_equivalence_identity x)
xx
yy)
: P x x (internal_adjoint_equivalence_identity x) xx yy ff.
Show proof.
Definition disp_J_2_0
{B : bicat}
{D : disp_bicat B}
(HB_2_0 : is_univalent_2_0 B)
(HD_2_0 : disp_univalent_2_0 D)
(P : ∏ (x y : B)
(f : adjoint_equivalence x y)
(xx : D x) (yy : D y),
disp_adjoint_equivalence f xx yy → UU)
(P_id : ∏ (x : B)
(xx : D x),
P x x
(internal_adjoint_equivalence_identity x)
xx xx
(disp_identity_adjoint_equivalence xx))
{x y : B}
{f : adjoint_equivalence x y}
{xx : D x} {yy : D y}
(ff : disp_adjoint_equivalence f xx yy)
: P x y f xx yy ff.
Show proof.
Section Total_Category_Globally_Univalent.
Context {C : bicat}.
Variable (D : disp_bicat C)
(HC : is_univalent_2_0 C)
(HD : disp_univalent_2_0 D).
Local Notation E := (total_bicat D).
Local Definition path_E_obj
(x y : C)
(xx : D x)
(yy : D y)
: ((x ,, xx) = (y ,,yy)) ≃ ∑ (p : x = y), transportf _ p xx = yy
:= total2_paths_equiv _ (x ,, xx) (y ,, yy).
Local Definition path_to_adj_equiv_E
(x y : C)
(xx : D x)
(yy : D y)
: (∑ (p : x = y), transportf _ p xx = yy)
≃
∑ (i : adjoint_equivalence x y),
disp_adjoint_equivalence i xx yy.
Show proof.
Definition idtoiso_2_0_alt
{a b : C}
(aa : D a) (bb : D b)
: a,, aa = b,, bb ≃ @adjoint_equivalence E (a,, aa) (b,, bb)
:= ((invweq (adjoint_equivalence_total_disp_weq aa bb))
∘ path_to_adj_equiv_E a b aa bb
∘ path_E_obj a b aa bb)%weq.
Definition idtoiso_2_0_is_idtoiso_id_2_0_alt
(x y : E)
: @idtoiso_2_0 E x y ~ idtoiso_2_0_alt (pr2 x) (pr2 y).
Show proof.
Definition total_is_univalent_2_0 : is_univalent_2_0 E.
Show proof.
Section Disp_Univalent_2.
Context {C : bicat}.
Definition disp_univalent_2 (D : disp_bicat C)
: UU
:= disp_univalent_2_0 D × disp_univalent_2_1 D.
Definition make_disp_univalent_2 {D : disp_bicat C}
(univ_2_0 : disp_univalent_2_0 D)
(univ_2_1 : disp_univalent_2_1 D)
: disp_univalent_2 D
:= make_dirprod univ_2_0 univ_2_1.
Definition disp_univalent_2_0_of_2 {D : disp_bicat C}
(univ_2 : disp_univalent_2 D)
: disp_univalent_2_0 D
:= pr1 univ_2.
Definition disp_univalent_2_1_of_2 {D : disp_bicat C}
(univ_2 : disp_univalent_2 D)
: disp_univalent_2_1 D
:= pr2 univ_2.
End Disp_Univalent_2.
Lemma total_is_univalent_2
{C : bicat}
{D: disp_bicat C}
: disp_univalent_2 D →
is_univalent_2 C →
is_univalent_2 (total_bicat D).
Show proof.
{B : bicat}
{D : disp_bicat B}
{b₁ b₂ b₃ : B}
{h : b₁ --> b₂}
{f : b₂ --> b₃}
{g : b₁ --> b₃}
{α : h · f ==> g}
{bb₁ : D b₁}
{bb₂ : D b₂}
{bb₃ : D b₃}
(ff : bb₂ -->[ f ] bb₃)
(gg : bb₁ -->[ g ] bb₃)
{hh₁ hh₂ : bb₁ -->[ h] bb₂}
(p : hh₁ = hh₂)
(αα : hh₁ ;; ff ==>[ α] gg)
: transportf
(λ (z : bb₁ -->[ h ] bb₂), z ;; ff ==>[ α ] gg)
p
αα
=
transportf
(λ z, _ ==>[ z ] _)
(maponpaths (λ z, z • _) (id2_rwhisker _ _) @ id2_left _)
((disp_idtoiso_2_1 _ (idpath _) _ _ (!p) ▹▹ ff) •• αα).
Show proof.
induction p ; cbn.
cbn.
rewrite disp_id2_rwhisker.
unfold transportb.
rewrite disp_mor_transportf_postwhisker.
rewrite disp_id2_left.
unfold transportb.
rewrite !transport_f_f.
refine (!_).
use (transportf_set (λ z : h · f ==> g, hh₁ ;; ff ==>[ z ] gg)).
apply cellset_property.
cbn.
rewrite disp_id2_rwhisker.
unfold transportb.
rewrite disp_mor_transportf_postwhisker.
rewrite disp_id2_left.
unfold transportb.
rewrite !transport_f_f.
refine (!_).
use (transportf_set (λ z : h · f ==> g, hh₁ ;; ff ==>[ z ] gg)).
apply cellset_property.
Definition disp_idtoiso_2_1_inv
{B : bicat}
{D : disp_bicat B}
{b₁ b₂ : B}
{f : b₁ --> b₂}
{bb₁ : D b₁}
{bb₂ : D b₂}
(ff₁ ff₂ : bb₁ -->[ f ] bb₂)
(p : ff₁ = ff₂)
: pr1 (disp_idtoiso_2_1 _ (idpath _) _ _ (!p))
=
disp_inv_cell (disp_idtoiso_2_1 _ (idpath _) _ _ p).
Show proof.
Definition disp_idtoiso_isotoid_2_1
{B : bicat}
{D : disp_bicat B}
(HD_2_1 : disp_univalent_2_1 D)
{b₁ b₂ : B}
{f g : b₁ --> b₂}
(p : f = g)
{bb₁ : D b₁}
{bb₂ : D b₂}
{ff : bb₁ -->[ f ] bb₂}
{gg : bb₁ -->[ g ] bb₂}
(α : disp_invertible_2cell (idtoiso_2_1 f g p) ff gg)
: disp_idtoiso_2_1
_ p ff gg
(disp_isotoid_2_1
_ HD_2_1
p ff gg
α)
=
α.
Show proof.
Definition disp_isotoid_idtoiso_2_1
{B : bicat}
{D : disp_bicat B}
(HD_2_1 : disp_univalent_2_1 D)
{b₁ b₂ : B}
{f g : b₁ --> b₂}
(p : f = g)
{bb₁ : D b₁}
{bb₂ : D b₂}
{ff : bb₁ -->[ f ] bb₂}
{gg : bb₁ -->[ g ] bb₂}
(pp : transportf (λ z, bb₁ -->[ z] bb₂) p ff = gg)
: disp_isotoid_2_1
_ HD_2_1
p ff gg
(disp_idtoiso_2_1
_ p ff gg
pp)
=
pp.
Show proof.
Section Total_Category_Univalent_2_1.
Context {C : bicat}.
Variable (D : disp_bicat C)
(HC : is_univalent_2_1 C)
(HD : disp_univalent_2_1 D).
Local Definition E := (total_bicat D).
Local Definition path_E
{x y : C}
{xx : D x}
{yy : D y}
{f g : C⟦x,y⟧}
(ff : xx -->[ f ] yy)
(gg : xx -->[ g ] yy)
: (f,, ff = g,, gg) ≃ ∑ (p : f = g), transportf _ p ff = gg
:= total2_paths_equiv _ (f ,, ff) (g ,, gg).
Local Definition path_to_iso_E
{x y : C}
{xx : D x}
{yy : D y}
{f g : C⟦x,y⟧}
(ff : xx -->[ f ] yy)
(gg : xx -->[ g ] yy)
: (∑ (p : f = g), transportf _ p ff = gg)
≃
∑ (i : invertible_2cell f g), disp_invertible_2cell i ff gg.
Show proof.
use weqbandf.
- exact (idtoiso_2_1 f g ,, HC x y f g).
- cbn.
intros p.
exact (disp_idtoiso_2_1 D p ff gg ,, HD x y f g p xx yy ff gg).
- exact (idtoiso_2_1 f g ,, HC x y f g).
- cbn.
intros p.
exact (disp_idtoiso_2_1 D p ff gg ,, HD x y f g p xx yy ff gg).
Local Definition idtoiso_alt
{x y : E}
(f g : E⟦x,y⟧)
: (idtoiso_2_1 f g
~
(iso_in_E_weq (pr2 f) (pr2 g))
∘ (path_to_iso_E (pr2 f) (pr2 g))
∘ (path_E (pr2 f) (pr2 g)))%weq.
Show proof.
Definition total_is_univalent_2_1 : is_univalent_2_1 E.
Show proof.
End Total_Category_Univalent_2_1.
Definition fiberwise_local_univalent
{C : bicat}
(D : disp_bicat C)
: UU
:= ∏ (a b : C) (f : C ⟦ a, b ⟧) (aa : D a) (bb : D b)
(ff : aa -->[ f] bb) (gg : aa -->[ f ] bb),
isweq (disp_idtoiso_2_1 D (idpath f) ff gg).
Definition fiberwise_local_univalent_is_univalent_2_1
{C : bicat}
(D : disp_bicat C)
(HD : fiberwise_local_univalent D)
: disp_univalent_2_1 D.
Show proof.
intros x y f g p xx yy ff gg.
induction p.
apply HD.
induction p.
apply HD.
Lemma isaprop_disp_left_adjoint_equivalence
{C : bicat}
{D : disp_bicat C}
{a b : C}
{aa : D a} {bb : D b}
{f : a --> b}
(Hf : left_adjoint_equivalence f)
(ff : aa -->[f] bb)
: is_univalent_2_1 C →
disp_univalent_2_1 D →
isaprop (disp_left_adjoint_equivalence Hf ff).
Show proof.
intros HUC HUD.
revert Hf. apply hlevel_total2.
2: { apply hlevelntosn.
apply isaprop_left_adjoint_equivalence.
assumption. }
eapply isofhlevelweqf.
{ apply left_adjoint_equivalence_total_disp_weq. }
apply isaprop_left_adjoint_equivalence.
apply total_is_univalent_2_1; assumption.
revert Hf. apply hlevel_total2.
2: { apply hlevelntosn.
apply isaprop_left_adjoint_equivalence.
assumption. }
eapply isofhlevelweqf.
{ apply left_adjoint_equivalence_total_disp_weq. }
apply isaprop_left_adjoint_equivalence.
apply total_is_univalent_2_1; assumption.
Section Displayed_Global_Univalence.
Context {C : bicat}.
Variable (D : disp_bicat C).
Definition disp_idtoiso_2_0
{a b : C}
(p : a = b)
(aa : D a) (bb : D b)
(pp : transportf (λ z, D z) p aa = bb)
: disp_adjoint_equivalence (idtoiso_2_0 a b p) aa bb.
Show proof.
Definition disp_univalent_2_0
: UU
:= ∏ (a b : C) (p : a = b) (aa : D a) (bb : D b),
isweq (disp_idtoiso_2_0 p aa bb).
End Displayed_Global_Univalence.
Definition fiberwise_univalent_2_0
{C : bicat}
(D : disp_bicat C)
: UU
:= ∏ (a : C) (aa bb : D a),
isweq (disp_idtoiso_2_0 D (idpath a) aa bb).
Definition fiberwise_univalent_2_0_to_disp_univalent_2_0
{C : bicat}
(D : disp_bicat C)
: fiberwise_univalent_2_0 D → disp_univalent_2_0 D.
Show proof.
intros HD.
intros a b p aa bb.
induction p.
exact (HD a aa bb).
intros a b p aa bb.
induction p.
exact (HD a aa bb).
Definition disp_isotoid_2_0
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
{x : B}
{xx yy : D x}
(ee : disp_adjoint_equivalence
(internal_adjoint_equivalence_identity x)
xx
yy)
: xx = yy
:= invmap
(make_weq _ (HD_2_0 x x (idpath _) xx yy))
ee.
Definition disp_idtoiso_2_0_isotoid_2_0
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
{x : B}
{xx yy : D x}
(ee : disp_adjoint_equivalence
(internal_adjoint_equivalence_identity x)
xx
yy)
: disp_idtoiso_2_0 D (idpath _) xx yy (disp_isotoid_2_0 HD_2_0 ee)
=
ee.
Show proof.
Definition disp_isotoid_2_0_idtoiso_2_0
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
{x : B}
{xx yy : D x}
(p : xx = yy)
: disp_isotoid_2_0 HD_2_0 (disp_idtoiso_2_0 _ (idpath _) xx yy p) = p.
Show proof.
Definition disp_J_2_0_help_on_paths
{B : bicat}
{D : disp_bicat B}
(P : ∏ (x y : B)
(f : adjoint_equivalence x y)
(xx : D x) (yy : D y),
disp_adjoint_equivalence f xx yy → UU)
(P_id : ∏ (x : B)
(xx : D x),
P x x
(internal_adjoint_equivalence_identity x)
xx xx
(disp_identity_adjoint_equivalence xx))
{x : B}
{xx : D x} {yy : D x}
(p : xx = yy)
: P x x
(internal_adjoint_equivalence_identity x)
xx yy
(disp_idtoiso_2_0 D (idpath x) xx yy p).
Show proof.
induction p.
apply P_id.
apply P_id.
Definition disp_J_2_0_help
{B : bicat}
{D : disp_bicat B}
(HD_2_0 : disp_univalent_2_0 D)
(P : ∏ (x y : B)
(f : adjoint_equivalence x y)
(xx : D x) (yy : D y),
disp_adjoint_equivalence f xx yy → UU)
(P_id : ∏ (x : B)
(xx : D x),
P x x
(internal_adjoint_equivalence_identity x)
xx xx
(disp_identity_adjoint_equivalence xx))
{x : B}
{xx : D x} {yy : D x}
(ff : disp_adjoint_equivalence
(internal_adjoint_equivalence_identity x)
xx
yy)
: P x x (internal_adjoint_equivalence_identity x) xx yy ff.
Show proof.
pose (disp_J_2_0_help_on_paths P P_id (disp_isotoid_2_0 HD_2_0 ff)).
refine (transportf
(P x x _ xx yy)
_
(disp_J_2_0_help_on_paths P P_id (disp_isotoid_2_0 HD_2_0 ff))).
apply disp_idtoiso_2_0_isotoid_2_0.
refine (transportf
(P x x _ xx yy)
_
(disp_J_2_0_help_on_paths P P_id (disp_isotoid_2_0 HD_2_0 ff))).
apply disp_idtoiso_2_0_isotoid_2_0.
Definition disp_J_2_0
{B : bicat}
{D : disp_bicat B}
(HB_2_0 : is_univalent_2_0 B)
(HD_2_0 : disp_univalent_2_0 D)
(P : ∏ (x y : B)
(f : adjoint_equivalence x y)
(xx : D x) (yy : D y),
disp_adjoint_equivalence f xx yy → UU)
(P_id : ∏ (x : B)
(xx : D x),
P x x
(internal_adjoint_equivalence_identity x)
xx xx
(disp_identity_adjoint_equivalence xx))
{x y : B}
{f : adjoint_equivalence x y}
{xx : D x} {yy : D y}
(ff : disp_adjoint_equivalence f xx yy)
: P x y f xx yy ff.
Show proof.
revert x y f xx yy ff.
use (J_2_0 HB_2_0).
intros x xx yy ff.
exact (disp_J_2_0_help HD_2_0 P P_id ff).
use (J_2_0 HB_2_0).
intros x xx yy ff.
exact (disp_J_2_0_help HD_2_0 P P_id ff).
Section Total_Category_Globally_Univalent.
Context {C : bicat}.
Variable (D : disp_bicat C)
(HC : is_univalent_2_0 C)
(HD : disp_univalent_2_0 D).
Local Notation E := (total_bicat D).
Local Definition path_E_obj
(x y : C)
(xx : D x)
(yy : D y)
: ((x ,, xx) = (y ,,yy)) ≃ ∑ (p : x = y), transportf _ p xx = yy
:= total2_paths_equiv _ (x ,, xx) (y ,, yy).
Local Definition path_to_adj_equiv_E
(x y : C)
(xx : D x)
(yy : D y)
: (∑ (p : x = y), transportf _ p xx = yy)
≃
∑ (i : adjoint_equivalence x y),
disp_adjoint_equivalence i xx yy.
Show proof.
use weqbandf.
- exact (idtoiso_2_0 x y ,, HC x y).
- cbn.
intros p.
exact (disp_idtoiso_2_0 D p xx yy ,, HD x y p xx yy).
- exact (idtoiso_2_0 x y ,, HC x y).
- cbn.
intros p.
exact (disp_idtoiso_2_0 D p xx yy ,, HD x y p xx yy).
Definition idtoiso_2_0_alt
{a b : C}
(aa : D a) (bb : D b)
: a,, aa = b,, bb ≃ @adjoint_equivalence E (a,, aa) (b,, bb)
:= ((invweq (adjoint_equivalence_total_disp_weq aa bb))
∘ path_to_adj_equiv_E a b aa bb
∘ path_E_obj a b aa bb)%weq.
Definition idtoiso_2_0_is_idtoiso_id_2_0_alt
(x y : E)
: @idtoiso_2_0 E x y ~ idtoiso_2_0_alt (pr2 x) (pr2 y).
Show proof.
intros p.
induction p.
use total2_paths_b.
- reflexivity.
- use subtypePath.
+ intro.
apply isapropdirprod.
* apply isapropdirprod ; apply E.
* apply isapropdirprod ; apply isaprop_is_invertible_2cell.
+ reflexivity.
induction p.
use total2_paths_b.
- reflexivity.
- use subtypePath.
+ intro.
apply isapropdirprod.
* apply isapropdirprod ; apply E.
* apply isapropdirprod ; apply isaprop_is_invertible_2cell.
+ reflexivity.
Definition total_is_univalent_2_0 : is_univalent_2_0 E.
Show proof.
intros x y.
exact (weqhomot (idtoiso_2_0 x y) _ (invhomot (idtoiso_2_0_is_idtoiso_id_2_0_alt x y))).
End Total_Category_Globally_Univalent.exact (weqhomot (idtoiso_2_0 x y) _ (invhomot (idtoiso_2_0_is_idtoiso_id_2_0_alt x y))).
Section Disp_Univalent_2.
Context {C : bicat}.
Definition disp_univalent_2 (D : disp_bicat C)
: UU
:= disp_univalent_2_0 D × disp_univalent_2_1 D.
Definition make_disp_univalent_2 {D : disp_bicat C}
(univ_2_0 : disp_univalent_2_0 D)
(univ_2_1 : disp_univalent_2_1 D)
: disp_univalent_2 D
:= make_dirprod univ_2_0 univ_2_1.
Definition disp_univalent_2_0_of_2 {D : disp_bicat C}
(univ_2 : disp_univalent_2 D)
: disp_univalent_2_0 D
:= pr1 univ_2.
Definition disp_univalent_2_1_of_2 {D : disp_bicat C}
(univ_2 : disp_univalent_2 D)
: disp_univalent_2_1 D
:= pr2 univ_2.
End Disp_Univalent_2.
Lemma total_is_univalent_2
{C : bicat}
{D: disp_bicat C}
: disp_univalent_2 D →
is_univalent_2 C →
is_univalent_2 (total_bicat D).
Show proof.
intros UD UC.
split.
- apply total_is_univalent_2_0. { apply UC. }
apply disp_univalent_2_0_of_2. assumption.
- apply total_is_univalent_2_1. { apply UC. }
apply disp_univalent_2_1_of_2. assumption.
split.
- apply total_is_univalent_2_0. { apply UC. }
apply disp_univalent_2_0_of_2. assumption.
- apply total_is_univalent_2_1. { apply UC. }
apply disp_univalent_2_1_of_2. assumption.
Displayed local univalence corresponds with the expected local condition
Section DispLocallyUnivalent.
Context {B : bicat}
(D : disp_bicat B)
{x y : B}
{f : x --> y}
{xx : D x}
{yy : D y}
(ff₁ ff₂ : xx -->[ f ] yy).
Definition disp_inv2cell_to_disp_z_iso
: disp_invertible_2cell (id2_invertible_2cell f) ff₁ ff₂
→
@z_iso_disp _ (disp_hom xx yy) _ _ (identity_z_iso _) ff₁ ff₂.
Show proof.
Definition disp_z_iso_to_disp_inv2cell
: @z_iso_disp _ (disp_hom xx yy) _ _ (identity_z_iso _) ff₁ ff₂
→
disp_invertible_2cell (id2_invertible_2cell f) ff₁ ff₂.
Show proof.
Definition disp_inv2cell_weq_disp_z_iso
: disp_invertible_2cell (id2_invertible_2cell f) ff₁ ff₂
≃
@z_iso_disp _ (disp_hom xx yy) _ _ (identity_z_iso _) ff₁ ff₂.
Show proof.
Definition is_univalent_disp_disp_hom
{B : bicat}
(D : disp_bicat B)
(HD : disp_univalent_2_1 D)
{x y : B}
(xx : D x)
(yy : D y)
: is_univalent_disp (disp_hom xx yy).
Show proof.
Context {B : bicat}
(D : disp_bicat B)
{x y : B}
{f : x --> y}
{xx : D x}
{yy : D y}
(ff₁ ff₂ : xx -->[ f ] yy).
Definition disp_inv2cell_to_disp_z_iso
: disp_invertible_2cell (id2_invertible_2cell f) ff₁ ff₂
→
@z_iso_disp _ (disp_hom xx yy) _ _ (identity_z_iso _) ff₁ ff₂.
Show proof.
intro α.
simple refine (@make_z_iso_disp _ (disp_hom xx yy) _ _ _ _ _ _ _).
- exact (pr1 α).
- simple refine (_ ,, _ ,, _).
+ exact (disp_inv_cell α).
+ abstract
(refine (disp_vcomp_linv α @ _) ; cbn ;
apply maponpaths_2 ;
apply cellset_property).
+ abstract
(refine (disp_vcomp_rinv α @ _) ; cbn ;
apply maponpaths_2 ;
apply cellset_property).
simple refine (@make_z_iso_disp _ (disp_hom xx yy) _ _ _ _ _ _ _).
- exact (pr1 α).
- simple refine (_ ,, _ ,, _).
+ exact (disp_inv_cell α).
+ abstract
(refine (disp_vcomp_linv α @ _) ; cbn ;
apply maponpaths_2 ;
apply cellset_property).
+ abstract
(refine (disp_vcomp_rinv α @ _) ; cbn ;
apply maponpaths_2 ;
apply cellset_property).
Definition disp_z_iso_to_disp_inv2cell
: @z_iso_disp _ (disp_hom xx yy) _ _ (identity_z_iso _) ff₁ ff₂
→
disp_invertible_2cell (id2_invertible_2cell f) ff₁ ff₂.
Show proof.
intro α.
simple refine (_ ,, _ ,, _ ,, _).
- exact (pr1 α).
- exact (inv_mor_disp_from_z_iso α).
- abstract
(cbn ;
refine (pr222 α @ _) ;
apply maponpaths_2 ;
apply cellset_property).
- abstract
(cbn ;
refine (pr122 α @ _) ;
apply maponpaths_2 ;
apply cellset_property).
simple refine (_ ,, _ ,, _ ,, _).
- exact (pr1 α).
- exact (inv_mor_disp_from_z_iso α).
- abstract
(cbn ;
refine (pr222 α @ _) ;
apply maponpaths_2 ;
apply cellset_property).
- abstract
(cbn ;
refine (pr122 α @ _) ;
apply maponpaths_2 ;
apply cellset_property).
Definition disp_inv2cell_weq_disp_z_iso
: disp_invertible_2cell (id2_invertible_2cell f) ff₁ ff₂
≃
@z_iso_disp _ (disp_hom xx yy) _ _ (identity_z_iso _) ff₁ ff₂.
Show proof.
use make_weq.
- exact disp_inv2cell_to_disp_z_iso.
- use isweq_iso.
+ exact disp_z_iso_to_disp_inv2cell.
+ abstract
(intro α ;
use subtypePath ; [ intro ; apply isaprop_is_disp_invertible_2cell | ] ;
apply idpath).
+ abstract
(intro α ;
use subtypePath ; [ intro ; apply isaprop_is_z_iso_disp | ] ;
apply idpath).
End DispLocallyUnivalent.- exact disp_inv2cell_to_disp_z_iso.
- use isweq_iso.
+ exact disp_z_iso_to_disp_inv2cell.
+ abstract
(intro α ;
use subtypePath ; [ intro ; apply isaprop_is_disp_invertible_2cell | ] ;
apply idpath).
+ abstract
(intro α ;
use subtypePath ; [ intro ; apply isaprop_is_z_iso_disp | ] ;
apply idpath).
Definition is_univalent_disp_disp_hom
{B : bicat}
(D : disp_bicat B)
(HD : disp_univalent_2_1 D)
{x y : B}
(xx : D x)
(yy : D y)
: is_univalent_disp (disp_hom xx yy).
Show proof.
intros f g p ff gg.
induction p.
use weqhomot.
- exact (disp_inv2cell_weq_disp_z_iso D _ _
∘ make_weq _ (HD x y f f (idpath _) xx yy ff gg))%weq.
- abstract
(intro p ;
induction p ;
use subtypePath ; [ intro ; apply isaprop_is_z_iso_disp | ] ;
apply idpath).
induction p.
use weqhomot.
- exact (disp_inv2cell_weq_disp_z_iso D _ _
∘ make_weq _ (HD x y f f (idpath _) xx yy ff gg))%weq.
- abstract
(intro p ;
induction p ;
use subtypePath ; [ intro ; apply isaprop_is_z_iso_disp | ] ;
apply idpath).