Library UniMath.CategoryTheory.DisplayedCats.SIP


The Structure Identity Principle

A short proof of the SIP (HoTT book, chapter 9.8)

The Structure Identity Principle


Section SIP.

The data and properties according to HoTT book, chapter 9.8


Variable C : category.
Variable univC : is_univalent C.
Variable P : ob C -> UU.
Variable Pisset : x, isaset (P x).
Variable H : (x y : C), P x P y Cx,y UU.
Arguments H {_ _} _ _ _ .
Variable Hisprop : x y a b (f : Cx,y), isaprop (H a b f).
Variable Hid : (x : C) (a : P x), H a a (identity _ ).
Variable Hcomp : (x y z : C) a b c (f : Cx,y) (g : Cy,z),
                 H a b f H b c g H a c (f · g).
Variable Hstandard : (x : C) (a a' : P x),
                     H a a' (identity _ ) H a' a (identity _ ) a = a'.

A displayed precategory from the data

Displayed category from SIP data is univalent


Lemma is_univalent_disp_from_SIP_data : is_univalent_disp disp_cat_from_SIP_data.
Show proof.
  apply is_univalent_disp_from_fibers.
  intros x a b.
  apply isweqimplimpl.
  - intro i. apply Hstandard.
    * apply i.
    * apply (inv_mor_disp_from_z_iso i).
  - apply Pisset.
  - apply isofhleveltotal2.
    + apply Hisprop.
    + intro. apply (@isaprop_is_z_iso_disp _ disp_cat_from_SIP_data).

The conclusion of SIP: total category is univalent

TODO: add some examples