Library UniMath.CategoryTheory.Monads.KTriples

Kleisli Triples


Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monads.RelativeMonads.

Local Open Scope cat.

Ltac pathvia b := (apply (@pathscomp0 _ _ b _ )).


Section Kleisli_defn.

  Context {C : category}.


Definition Kleisli_Data : UU := T : C C,
  ( a : C, a --> T a) × ( a b : C, (a --> T b) (T a --> T b)).


Definition Kleisli_Data_ob (T: Kleisli_Data) (c : C) : C := pr1 T c.
Coercion Kleisli_Data_ob : Kleisli_Data >-> Funclass.

Definition η (T : Kleisli_Data) : a : C, a --> T a := pr1 (pr2 T).

Definition bind (T : Kleisli_Data) {a b : C} :
  Ca,T b CT a,T b := pr2 (pr2 T) a b.


Definition Kleisli_Laws (T : Kleisli_Data) :=
  ( a, bind T (η T a) = identity (T a)) ×
  ( a b (f : Ca,T b), bind T f η T a = f) ×
  ( a b c (f : Ca,T b) (g : Cb,T c), bind T g bind T f = bind T (bind T g f)).

Lemma isaprop_Kleisli_Laws (T : Kleisli_Data) :
  isaprop (Kleisli_Laws T).
Show proof.
  repeat apply isapropdirprod; repeat (apply impred_isaprop; intros); apply homset_property.

Definition bind_bind {T : Kleisli_Data} (H: Kleisli_Laws T) :
   a b c (f : Ca,T b) (g : Cb,T c), bind T g bind T f = bind T (bind T g f) :=
  pr2 (pr2 H).

Definition bind_η {T : Kleisli_Data} (H : Kleisli_Laws T) :
   a b (f : Ca,T b), bind T f η T a = f := pr1 (pr2 H).

Definition η_bind {T : Kleisli_Data} (H : Kleisli_Laws T) :
   a, bind T (η T a) = identity (T a) := pr1 H.


Definition KleisliMonad : UU :=
   (T : Kleisli_Data), Kleisli_Laws T.
Coercion Kleisli_Data_from_Kleisli (T : KleisliMonad) : Kleisli_Data := pr1 T.
Coercion kleisli_laws (T : KleisliMonad) : Kleisli_Laws (pr1 T) := pr2 T.

End Kleisli_defn.

Arguments KleisliMonad: clear implicits.
Arguments Kleisli_Data: clear implicits.


Section Kleisli_precategory.


Definition Kleisli_Mor_laws {C : category} (T T': Kleisli_Data C)
             (α : a : C, T a --> T' a) : UU :=
  ( a : C, α a η T a = η T' a) ×
  ( (a b : C) (f : Ca,T b), bind T' (α b f) α a = α b (bind T f)).

Lemma isaprop_Kleisli_Mor_laws {C : category} (T T' : Kleisli_Data C)
        (α : a : C, T a --> T' a) :
  isaprop (Kleisli_Mor_laws T T' α).
Show proof.
  apply isapropdirprod; repeat (apply impred_isaprop; intros); apply homset_property.

Definition Kleisli_Mor {C : category} (T T' : Kleisli_Data C) : UU :=
   (α : a : C, T a --> T' a), Kleisli_Mor_laws T T' α.

Definition nat_trans_from_kleisli_mor {C : category}
           {T T' : Kleisli_Data C} (s : Kleisli_Mor T T') :
   a : C, T a --> T' a := pr1 s.

Definition Kleisli_Mor_η {C : category} {T T' : KleisliMonad C} (α : Kleisli_Mor T T') :
   a : C, η T a · nat_trans_from_kleisli_mor α a = η T' a :=
  pr1 (pr2 α).

Definition Kleisli_Mor_bind {C : category} {T T' : KleisliMonad C} (α : Kleisli_Mor T T') :
   (a b : C) (f : Ca,T b),
    bind T' (nat_trans_from_kleisli_mor α b f) nat_trans_from_kleisli_mor α a =
    nat_trans_from_kleisli_mor α b (bind T f) :=
  pr2 (pr2 α).

Definition Kleisli_Mor_equiv {C : category} {T T' : KleisliMonad C}
           (α β : Kleisli_Mor T T') :
  α = β (nat_trans_from_kleisli_mor α = nat_trans_from_kleisli_mor β).
Show proof.
  apply subtypeInjectivity.
  intro a.
  now apply isaprop_Kleisli_Mor_laws.


Definition map {C : category} (T : Kleisli_Data C) {a b : C} (f : a --> b) :
  T a --> T b :=
  bind T (η T b f).

Lemma map_id {C : category} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
   a : C, map T (identity a) = identity (T a).
Show proof.
  intro. unfold map.
  rewrite id_left.
  now apply η_bind.

Lemma map_map {C : category} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
   (a b c : C) (f : a --> b) (g : b --> c), map T (g f) = map T g map T f.
Show proof.
  intros. unfold map.
  rewrite (bind_bind H).
  do 2 rewrite <- assoc.
  now rewrite (bind_η H).

Lemma map_bind {C : category} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
   (a b c : C) (f : b --> c) (g : a --> T b), map T f bind T g = bind T (map T f g).
Show proof.
  intros. unfold map.
  now rewrite (bind_bind H).

Lemma bind_map {C : category} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
   (a b c : C) (f : b --> T c) (g : a --> b),
  bind T f map T g = bind T (f g).
Show proof.
  intros. unfold map.
  rewrite (bind_bind H).
  rewrite <- assoc.
  now rewrite (bind_η H).

Lemma map_η {C : category} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
   (a b : C) (f : a --> b),
  map T f η T a = η T b f.
Show proof.
  intros. unfold map.
  now rewrite (bind_η H).

Definition μ {C : category} (T : Kleisli_Data C) (a : C) :
  T (T a) --> T a :=
  bind T (identity (T a)).


Definition kleisli_functor_data {C : category} (T : Kleisli_Data C) :
  functor_data C C :=
  make_functor_data T (@map C T).

Definition is_functor_kleisli {C : category}
           {T : Kleisli_Data C} (H : Kleisli_Laws T) :
  is_functor(kleisli_functor_data T) :=
  map_id H ,, map_map H.

Definition kleisli_functor {C : category} (T : KleisliMonad C) : functor C C :=
  make_functor (kleisli_functor_data T) (is_functor_kleisli T).

Lemma is_nat_trans_kleisli_mor {C : category} {T T' : KleisliMonad C} (α : Kleisli_Mor T T') :
  is_nat_trans (kleisli_functor T) (kleisli_functor T') (nat_trans_from_kleisli_mor α).
Show proof.
  unfold is_nat_trans. intros. simpl. unfold map.
  rewrite <- (Kleisli_Mor_bind α).
  rewrite <- assoc.
  now rewrite (Kleisli_Mor_η α).

Definition nat_trans_kleisli_mor {C : category} {T T' : KleisliMonad C} (α : Kleisli_Mor T T') :
  nat_trans (kleisli_functor T) (kleisli_functor T') :=
  make_nat_trans (kleisli_functor T) (kleisli_functor T')
               (nat_trans_from_kleisli_mor α) (is_nat_trans_kleisli_mor α).

Lemma Kleisli_Mor_eq {C : category}
      {T T' : KleisliMonad C} (α α' : Kleisli_Mor T T') :
  nat_trans_from_kleisli_mor α = nat_trans_from_kleisli_mor α' α = α'.
Show proof.
  apply Kleisli_Mor_equiv.

Lemma is_nat_trans_η {C : category} (T : KleisliMonad C) :
  is_nat_trans (functor_identity C) (kleisli_functor T) (η T).
Show proof.
  unfold is_nat_trans. simpl. intros.
  now rewrite (map_η T).

Definition nat_trans_η {C : category} (T : KleisliMonad C) :
  functor_identity C kleisli_functor T :=
  (η T,, is_nat_trans_η T).


Lemma is_nat_trans_μ {C : category} (T : KleisliMonad C) :
  is_nat_trans (kleisli_functor T kleisli_functor T) (kleisli_functor T) (μ T).
Show proof.
  unfold is_nat_trans, μ. simpl. intros.
  rewrite (map_bind T), (bind_map T).
  now rewrite id_left, id_right.

Definition nat_trans_μ {C : category} (T : KleisliMonad C) :
  kleisli_functor T kleisli_functor T kleisli_functor T :=
  μ T,, is_nat_trans_μ T.


Lemma Kleisli_identity_laws {C : category} (T : KleisliMonad C) :
  Kleisli_Mor_laws T T (λ a : C, identity (T a)).
Show proof.
  split; simpl; intros a.
  - apply id_right.
  - intros. do 2 rewrite id_right; apply id_left.

Definition Kleisli_identity {C : category} (T : KleisliMonad C) : Kleisli_Mor T T :=
  (λ a : C, identity (T a)),, Kleisli_identity_laws T.


Lemma Kleisli_composition_laws {C : category} {T T' T'' : KleisliMonad C}
        (α : Kleisli_Mor T T') (α' : Kleisli_Mor T' T'') :
  Kleisli_Mor_laws T T''
    (λ a : C, nat_trans_from_kleisli_mor α a · nat_trans_from_kleisli_mor α' a).
Show proof.
  split; intros; simpl.
  - rewrite assoc.
    set (H := Kleisli_Mor_η α). rewrite H.
    apply Kleisli_Mor_η.
  - pathvia (nat_trans_from_kleisli_mor α a ·
             (nat_trans_from_kleisli_mor α' a ·
              bind T'' ((f · nat_trans_from_kleisli_mor α b) ·
                        nat_trans_from_kleisli_mor α' b))).
    * now repeat rewrite assoc.
    * rewrite (Kleisli_Mor_bind α').
      rewrite assoc. rewrite (Kleisli_Mor_bind α).
      apply pathsinv0. apply assoc.

Definition Kleisli_composition {C : category} {T T' T'' : KleisliMonad C}
           (α : Kleisli_Mor T T') (α' : Kleisli_Mor T' T'') :
  Kleisli_Mor T T'' :=
  (λ a : C, nat_trans_from_kleisli_mor α a · nat_trans_from_kleisli_mor α' a),,
  Kleisli_composition_laws α α'.


Definition precategory_Kleisli_ob_mor (C : category) : precategory_ob_mor :=
  make_precategory_ob_mor (KleisliMonad C) Kleisli_Mor.

Definition precategory_Kleisli_Data (C : category) : precategory_data :=
  make_precategory_data (precategory_Kleisli_ob_mor C)
                        (@Kleisli_identity C)
                        (@Kleisli_composition C).

Lemma precategory_Kleisli_axioms (C : category) :
  is_precategory (precategory_Kleisli_Data C).
Show proof.
  repeat split; simpl; intros.
  - apply (invmap (Kleisli_Mor_equiv _ _ )).
    apply funextsec. intros x. apply id_left.
  - apply (invmap (Kleisli_Mor_equiv _ _ )).
    apply funextsec. intros x. apply id_right.
  - apply (invmap (Kleisli_Mor_equiv _ _ )).
    apply funextsec. intros x. apply assoc.
  - apply (invmap (Kleisli_Mor_equiv _ _ )).
    apply funextsec. intros x. apply assoc'.

Definition precategory_Kleisli (C : category) : precategory :=
  precategory_Kleisli_Data C,, precategory_Kleisli_axioms C.

Lemma has_homsets_Kleisli (C : category) :
  has_homsets (precategory_Kleisli C).
Show proof.
  intros F G. simpl. unfold Kleisli_Mor.
  apply isaset_total2 .
  - apply impred_isaset.
    intro. apply C.
  - intros.
    apply isasetaprop.
    apply isaprop_Kleisli_Mor_laws.


Definition category_Kleisli (C : category) : category :=
  precategory_Kleisli C ,, has_homsets_Kleisli C.

Definition forgetfunctor_Kleisli (C : category) :
  functor (category_Kleisli C) (functor_category C C).
Show proof.
  use make_functor.
  - simpl.
    use make_functor_data.
    + simpl.
      exact (λ T : KleisliMonad C, kleisli_functor T).
    + simpl. intros T T' α.
      exact (nat_trans_kleisli_mor α).
  - split.
    + red. intros. simpl. apply nat_trans_eq.
      * apply C.
      * intros; apply idpath.
    + unfold functor_compax. simpl. intros. apply nat_trans_eq.
      * apply C.
      * intros. apply idpath.

Lemma forgetKleisli_faithful (C : category) : faithful (forgetfunctor_Kleisli C).
Show proof.
  intros T T'. simpl.
  apply isinclbetweensets.
  - apply isaset_total2.
    + apply impred_isaset.
      intros. apply C.
    + intros. apply isasetaprop. apply isaprop_Kleisli_Mor_laws.
  - apply isaset_nat_trans. apply C.
  - intros α α' p.
    apply Kleisli_Mor_eq.
    apply funextsec. intro c.
    change (pr1 (nat_trans_kleisli_mor α) c = pr1 (nat_trans_kleisli_mor α') c).
    now rewrite p.

inherit the univalence result from precategory_RelMonad