Library UniMath.Bicategories.ComprehensionCat.Biequivalence.InternalLanguageTopos
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Equivalences.CompositesAndInverses.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiberwise.DependentProducts.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiberwise.DualBeckChevalley.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.CodFunctor.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.CodRightAdjoint.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.LocallyCartesianClosed.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.Preservation.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Require Import UniMath.Bicategories.DisplayedBicats.ProductDispBiequiv.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.ComprehensionEso.
Require Import UniMath.Bicategories.ComprehensionCat.TypeFormers.PiTypes.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.Examples.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.PiTypesBiequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Equivalences.CompositesAndInverses.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiberwise.DependentProducts.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiberwise.DualBeckChevalley.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.CodFunctor.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.CodRightAdjoint.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.LocallyCartesianClosed.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.Preservation.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Require Import UniMath.Bicategories.DisplayedBicats.ProductDispBiequiv.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.ComprehensionEso.
Require Import UniMath.Bicategories.ComprehensionCat.TypeFormers.PiTypes.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.Examples.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.PiTypesBiequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty.
Definition bicat_of_univ_pretopos
: bicat
:= total_bicat
(disp_bicat_of_univ_cat_with_cat_property pretopos_local_property).
Definition univ_pretopos_language
: bicat
:= total_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat pretopos_local_property).
Definition lang_univ_pretopos
: psfunctor
bicat_of_univ_pretopos
univ_pretopos_language
:= total_psfunctor
_ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property pretopos_local_property).
Definition internal_language_univ_pretopos
: is_biequivalence lang_univ_pretopos
:= total_is_biequivalence
_ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
pretopos_local_property).
: bicat
:= total_bicat
(disp_bicat_of_univ_cat_with_cat_property pretopos_local_property).
Definition univ_pretopos_language
: bicat
:= total_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat pretopos_local_property).
Definition lang_univ_pretopos
: psfunctor
bicat_of_univ_pretopos
univ_pretopos_language
:= total_psfunctor
_ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property pretopos_local_property).
Definition internal_language_univ_pretopos
: is_biequivalence lang_univ_pretopos
:= total_is_biequivalence
_ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
pretopos_local_property).
Definition disp_bicat_of_univ_pretopos
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
(disp_bicat_of_univ_cat_with_cat_property pretopos_local_property)
disp_bicat_univ_lccc.
Definition bicat_of_univ_pi_pretopos
: bicat
:= total_bicat disp_bicat_of_univ_pretopos.
Definition disp_bicat_univ_pi_pretopos_language
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat pretopos_local_property)
disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition univ_pi_pretopos_language
: bicat
:= total_bicat disp_bicat_univ_pi_pretopos_language.
Definition disp_psfunctor_lang_univ_pi_pretopos
: disp_psfunctor
disp_bicat_of_univ_pretopos
disp_bicat_univ_pi_pretopos_language
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
Definition lang_univ_pi_pretopos
: psfunctor
bicat_of_univ_pi_pretopos
univ_pi_pretopos_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_pi_pretopos.
Definition internal_language_univ_pi_pretopos
: is_biequivalence lang_univ_pi_pretopos.
Show proof.
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
(disp_bicat_of_univ_cat_with_cat_property pretopos_local_property)
disp_bicat_univ_lccc.
Definition bicat_of_univ_pi_pretopos
: bicat
:= total_bicat disp_bicat_of_univ_pretopos.
Definition disp_bicat_univ_pi_pretopos_language
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat pretopos_local_property)
disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition univ_pi_pretopos_language
: bicat
:= total_bicat disp_bicat_univ_pi_pretopos_language.
Definition disp_psfunctor_lang_univ_pi_pretopos
: disp_psfunctor
disp_bicat_of_univ_pretopos
disp_bicat_univ_pi_pretopos_language
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
refine (prod_disp_psfunctor
_ _ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
pretopos_local_property)
finlim_biequiv_dfl_comp_cat_disp_psfunctor_pi_types).
- apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
_ _ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
pretopos_local_property)
finlim_biequiv_dfl_comp_cat_disp_psfunctor_pi_types).
- apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition lang_univ_pi_pretopos
: psfunctor
bicat_of_univ_pi_pretopos
univ_pi_pretopos_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_pi_pretopos.
Definition internal_language_univ_pi_pretopos
: is_biequivalence lang_univ_pi_pretopos.
Show proof.
refine (total_is_biequivalence
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
pretopos_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)).
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
pretopos_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)).
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
Definition bicat_of_univ_pretopos_with_nat
: bicat
:= total_bicat
(disp_bicat_of_univ_cat_with_cat_property
pretopos_with_nat_local_property).
Definition univ_pretopos_with_nat_language
: bicat
:= total_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat
pretopos_with_nat_local_property).
Definition lang_univ_pretopos_with_nat
: psfunctor
bicat_of_univ_pretopos_with_nat
univ_pretopos_with_nat_language
:= total_psfunctor
_ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
pretopos_with_nat_local_property).
Definition internal_language_univ_pretopos_with_nat
: is_biequivalence lang_univ_pretopos_with_nat
:= total_is_biequivalence
_ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
pretopos_with_nat_local_property).
: bicat
:= total_bicat
(disp_bicat_of_univ_cat_with_cat_property
pretopos_with_nat_local_property).
Definition univ_pretopos_with_nat_language
: bicat
:= total_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat
pretopos_with_nat_local_property).
Definition lang_univ_pretopos_with_nat
: psfunctor
bicat_of_univ_pretopos_with_nat
univ_pretopos_with_nat_language
:= total_psfunctor
_ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
pretopos_with_nat_local_property).
Definition internal_language_univ_pretopos_with_nat
: is_biequivalence lang_univ_pretopos_with_nat
:= total_is_biequivalence
_ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
pretopos_with_nat_local_property).
Definition disp_bicat_of_univ_topos
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
(disp_bicat_of_univ_cat_with_cat_property topos_local_property)
disp_bicat_univ_lccc.
Definition bicat_of_univ_topos
: bicat
:= total_bicat disp_bicat_of_univ_topos.
Definition disp_bicat_univ_topos_language
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat topos_local_property)
disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition univ_topos_language
: bicat
:= total_bicat disp_bicat_univ_topos_language.
Definition disp_psfunctor_lang_univ_topos
: disp_psfunctor
disp_bicat_of_univ_topos
disp_bicat_univ_topos_language
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
Definition lang_univ_topos
: psfunctor
bicat_of_univ_topos
univ_topos_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos.
Definition internal_language_univ_topos
: is_biequivalence lang_univ_topos.
Show proof.
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
(disp_bicat_of_univ_cat_with_cat_property topos_local_property)
disp_bicat_univ_lccc.
Definition bicat_of_univ_topos
: bicat
:= total_bicat disp_bicat_of_univ_topos.
Definition disp_bicat_univ_topos_language
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat topos_local_property)
disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition univ_topos_language
: bicat
:= total_bicat disp_bicat_univ_topos_language.
Definition disp_psfunctor_lang_univ_topos
: disp_psfunctor
disp_bicat_of_univ_topos
disp_bicat_univ_topos_language
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
refine (prod_disp_psfunctor
_ _ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
topos_local_property)
finlim_biequiv_dfl_comp_cat_disp_psfunctor_pi_types).
- apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
_ _ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
topos_local_property)
finlim_biequiv_dfl_comp_cat_disp_psfunctor_pi_types).
- apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition lang_univ_topos
: psfunctor
bicat_of_univ_topos
univ_topos_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos.
Definition internal_language_univ_topos
: is_biequivalence lang_univ_topos.
Show proof.
refine (total_is_biequivalence
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
topos_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)).
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
topos_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)).
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
Definition disp_bicat_of_univ_topos_with_NNO
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
(disp_bicat_of_univ_cat_with_cat_property topos_with_NNO_local_property)
disp_bicat_univ_lccc.
Definition bicat_of_univ_topos_with_NNO
: bicat
:= total_bicat disp_bicat_of_univ_topos_with_NNO.
Definition disp_bicat_univ_topos_with_NNOlanguage
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat topos_with_NNO_local_property)
disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition univ_topos_with_NNO_language
: bicat
:= total_bicat disp_bicat_univ_topos_with_NNOlanguage.
Definition disp_psfunctor_lang_univ_topos_with_NNO
: disp_psfunctor
disp_bicat_of_univ_topos_with_NNO
disp_bicat_univ_topos_with_NNOlanguage
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
Definition lang_univ_topos_with_NNO
: psfunctor
bicat_of_univ_topos_with_NNO
univ_topos_with_NNO_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos_with_NNO.
Definition internal_language_univ_topos_with_NNO
: is_biequivalence lang_univ_topos_with_NNO.
Show proof.
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
(disp_bicat_of_univ_cat_with_cat_property topos_with_NNO_local_property)
disp_bicat_univ_lccc.
Definition bicat_of_univ_topos_with_NNO
: bicat
:= total_bicat disp_bicat_of_univ_topos_with_NNO.
Definition disp_bicat_univ_topos_with_NNOlanguage
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
(disp_bicat_of_cat_property_dfl_full_comp_cat topos_with_NNO_local_property)
disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition univ_topos_with_NNO_language
: bicat
:= total_bicat disp_bicat_univ_topos_with_NNOlanguage.
Definition disp_psfunctor_lang_univ_topos_with_NNO
: disp_psfunctor
disp_bicat_of_univ_topos_with_NNO
disp_bicat_univ_topos_with_NNOlanguage
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
refine (prod_disp_psfunctor
_ _ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
topos_with_NNO_local_property)
finlim_biequiv_dfl_comp_cat_disp_psfunctor_pi_types).
- apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
_ _ _ _
(finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
topos_with_NNO_local_property)
finlim_biequiv_dfl_comp_cat_disp_psfunctor_pi_types).
- apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
Definition lang_univ_topos_with_NNO
: psfunctor
bicat_of_univ_topos_with_NNO
univ_topos_with_NNO_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos_with_NNO.
Definition internal_language_univ_topos_with_NNO
: is_biequivalence lang_univ_topos_with_NNO.
Show proof.
refine (total_is_biequivalence
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
topos_with_NNO_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)).
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
topos_with_NNO_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)).
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.