Library UniMath.Bicategories.DisplayedBicats.DispBuilders
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor. Import PseudoFunctor.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.PathGroupoid.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.Modifications.Modification.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Local Open Scope cat.
Local Open Scope bicategory_scope.
Section NiceBuilders.
Context {B₁ B₂ : bicat} {D₁ : disp_bicat B₁} {D₂ : disp_bicat B₂}.
Variable (HD₁ : disp_2cells_isaprop D₂)
(HD₂ : disp_locally_groupoid D₂).
Definition make_disp_psfunctor
{F : psfunctor B₁ B₂}
(obFF : ∏ x:B₁, D₁ x → D₂ (F x))
(morFF : ∏ (x y : B₁) (f : B₁⟦x,y⟧) (xx : D₁ x) (yy : D₁ y),
(xx -->[f] yy) →
(obFF x xx -->[#F f] obFF y yy))
(cellFF : ∏ (x y : B₁) (f g : B₁⟦x,y⟧) (α : f ==> g) (xx : D₁ x) (yy : D₁ y)
(ff : xx -->[f] yy) (gg : xx -->[g] yy),
(ff ==>[α] gg) → (morFF x y f xx yy ff ==>[##F α] morFF x y g xx yy gg))
(disp_psfunctor_id : ∏ (x : B₁) (xx : D₁ x),
id_disp (obFF x xx) ==>[ psfunctor_id F x ] morFF x x (id₁ x) xx xx (id_disp xx))
(disp_psfunctor_comp : ∏ (x y z : B₁) (f : x --> y) (g : y --> z)
(xx : D₁ x) (yy : D₁ y) (zz : D₁ z)
(ff : xx -->[f] yy) (gg : yy -->[g] zz),
(comp_disp (morFF x y f xx yy ff) (morFF y z g yy zz gg))
==>[ psfunctor_comp F f g ]
morFF x z (f · g) xx zz (comp_disp ff gg))
: disp_psfunctor D₁ D₂ F.
Show proof.
Definition make_disp_pstrans
{F₁ F₂ : psfunctor B₁ B₂}
{FF₁ : disp_psfunctor D₁ D₂ F₁}
{FF₂ : disp_psfunctor D₁ D₂ F₂}
{α : pstrans F₁ F₂}
(αα₁ : ∏ (x : B₁) (xx : D₁ x), FF₁ x xx -->[ α x] FF₂ x xx)
(αα₂ : ∏ (x y : B₁) (f : B₁ ⟦ x, y ⟧) (xx : D₁ x) (yy : D₁ y) (ff : xx -->[ f] yy),
(αα₁ x xx;; disp_psfunctor_mor D₁ D₂ F₂ FF₂ ff)
==>[ psnaturality_of α f ]
disp_psfunctor_mor D₁ D₂ F₁ FF₁ ff;; αα₁ y yy)
: disp_pstrans FF₁ FF₂ α.
Show proof.
Definition make_disp_invmodification
{F₁ F₂ : psfunctor B₁ B₂}
{α β : pstrans F₁ F₂}
{FF₁ : disp_psfunctor D₁ D₂ F₁}
{FF₂ : disp_psfunctor D₁ D₂ F₂}
{αα : disp_pstrans FF₁ FF₂ α}
{ββ : disp_pstrans FF₁ FF₂ β}
{m : invertible_modification α β}
(mm : ∏ (x : B₁) (xx : D₁ x),
αα x xx ==>[ invertible_modcomponent_of m x ] ββ x xx)
: disp_invmodification _ _ _ _ αα ββ m.
Show proof.
Definition make_disp_invmodification'
{F₁ F₂ : psfunctor B₁ B₂}
{α β : pstrans F₁ F₂}
{FF₁ : disp_psfunctor D₁ D₂ F₁}
{FF₂ : disp_psfunctor D₁ D₂ F₂}
(αα : disp_pstrans FF₁ FF₂ α)
(ββ : disp_pstrans FF₁ FF₂ β)
(m : modification α β)
(Hm : is_invertible_modification m)
(mm : disp_modification _ _ _ _ αα ββ m)
(Hmm : ∏ (x : B₁) (xx : D₁ x),
is_disp_invertible_2cell (is_invertible_modcomponent_of m Hm x) (pr1 mm x xx))
: disp_invmodification _ _ _ _ αα ββ (m,,Hm).
Show proof.
End NiceBuilders.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor. Import PseudoFunctor.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.PathGroupoid.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.Modifications.Modification.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Local Open Scope cat.
Local Open Scope bicategory_scope.
Section NiceBuilders.
Context {B₁ B₂ : bicat} {D₁ : disp_bicat B₁} {D₂ : disp_bicat B₂}.
Variable (HD₁ : disp_2cells_isaprop D₂)
(HD₂ : disp_locally_groupoid D₂).
Definition make_disp_psfunctor
{F : psfunctor B₁ B₂}
(obFF : ∏ x:B₁, D₁ x → D₂ (F x))
(morFF : ∏ (x y : B₁) (f : B₁⟦x,y⟧) (xx : D₁ x) (yy : D₁ y),
(xx -->[f] yy) →
(obFF x xx -->[#F f] obFF y yy))
(cellFF : ∏ (x y : B₁) (f g : B₁⟦x,y⟧) (α : f ==> g) (xx : D₁ x) (yy : D₁ y)
(ff : xx -->[f] yy) (gg : xx -->[g] yy),
(ff ==>[α] gg) → (morFF x y f xx yy ff ==>[##F α] morFF x y g xx yy gg))
(disp_psfunctor_id : ∏ (x : B₁) (xx : D₁ x),
id_disp (obFF x xx) ==>[ psfunctor_id F x ] morFF x x (id₁ x) xx xx (id_disp xx))
(disp_psfunctor_comp : ∏ (x y z : B₁) (f : x --> y) (g : y --> z)
(xx : D₁ x) (yy : D₁ y) (zz : D₁ z)
(ff : xx -->[f] yy) (gg : yy -->[g] zz),
(comp_disp (morFF x y f xx yy ff) (morFF y z g yy zz gg))
==>[ psfunctor_comp F f g ]
morFF x z (f · g) xx zz (comp_disp ff gg))
: disp_psfunctor D₁ D₂ F.
Show proof.
use tpair.
- use make_disp_psfunctor_data.
+ exact obFF.
+ exact morFF.
+ exact cellFF.
+ intros.
use tpair.
* apply disp_psfunctor_id.
* apply HD₂.
+ intros.
use tpair.
* apply disp_psfunctor_comp.
* apply HD₂.
- abstract (repeat split; intro; intros; apply HD₁).
- use make_disp_psfunctor_data.
+ exact obFF.
+ exact morFF.
+ exact cellFF.
+ intros.
use tpair.
* apply disp_psfunctor_id.
* apply HD₂.
+ intros.
use tpair.
* apply disp_psfunctor_comp.
* apply HD₂.
- abstract (repeat split; intro; intros; apply HD₁).
Definition make_disp_pstrans
{F₁ F₂ : psfunctor B₁ B₂}
{FF₁ : disp_psfunctor D₁ D₂ F₁}
{FF₂ : disp_psfunctor D₁ D₂ F₂}
{α : pstrans F₁ F₂}
(αα₁ : ∏ (x : B₁) (xx : D₁ x), FF₁ x xx -->[ α x] FF₂ x xx)
(αα₂ : ∏ (x y : B₁) (f : B₁ ⟦ x, y ⟧) (xx : D₁ x) (yy : D₁ y) (ff : xx -->[ f] yy),
(αα₁ x xx;; disp_psfunctor_mor D₁ D₂ F₂ FF₂ ff)
==>[ psnaturality_of α f ]
disp_psfunctor_mor D₁ D₂ F₁ FF₁ ff;; αα₁ y yy)
: disp_pstrans FF₁ FF₂ α.
Show proof.
use tpair.
- use make_disp_pstrans_data.
+ exact αα₁.
+ intros.
use tpair.
* apply αα₂.
* apply HD₂.
- abstract (repeat split; intro; intros; apply HD₁).
- use make_disp_pstrans_data.
+ exact αα₁.
+ intros.
use tpair.
* apply αα₂.
* apply HD₂.
- abstract (repeat split; intro; intros; apply HD₁).
Definition make_disp_invmodification
{F₁ F₂ : psfunctor B₁ B₂}
{α β : pstrans F₁ F₂}
{FF₁ : disp_psfunctor D₁ D₂ F₁}
{FF₂ : disp_psfunctor D₁ D₂ F₂}
{αα : disp_pstrans FF₁ FF₂ α}
{ββ : disp_pstrans FF₁ FF₂ β}
{m : invertible_modification α β}
(mm : ∏ (x : B₁) (xx : D₁ x),
αα x xx ==>[ invertible_modcomponent_of m x ] ββ x xx)
: disp_invmodification _ _ _ _ αα ββ m.
Show proof.
use tpair.
- intro ; intros.
use tpair.
+ apply mm.
+ apply HD₂.
- abstract (repeat split; intro; intros; apply HD₁).
- intro ; intros.
use tpair.
+ apply mm.
+ apply HD₂.
- abstract (repeat split; intro; intros; apply HD₁).
Definition make_disp_invmodification'
{F₁ F₂ : psfunctor B₁ B₂}
{α β : pstrans F₁ F₂}
{FF₁ : disp_psfunctor D₁ D₂ F₁}
{FF₂ : disp_psfunctor D₁ D₂ F₂}
(αα : disp_pstrans FF₁ FF₂ α)
(ββ : disp_pstrans FF₁ FF₂ β)
(m : modification α β)
(Hm : is_invertible_modification m)
(mm : disp_modification _ _ _ _ αα ββ m)
(Hmm : ∏ (x : B₁) (xx : D₁ x),
is_disp_invertible_2cell (is_invertible_modcomponent_of m Hm x) (pr1 mm x xx))
: disp_invmodification _ _ _ _ αα ββ (m,,Hm).
Show proof.
use tpair.
- intros x xx. use tpair.
+ exact (pr1 mm x xx).
+ simpl. exact (Hmm x xx).
- simpl. exact (pr2 mm).
- intros x xx. use tpair.
+ exact (pr1 mm x xx).
+ simpl. exact (Hmm x xx).
- simpl. exact (pr2 mm).
End NiceBuilders.