Library UniMath.Bicategories.DisplayedBicats.Examples.PointedOneTypes
The univalent bicategory of pointed 1-types.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.OneTypes.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Local Open Scope cat.
Local Open Scope bicategory_scope.
Definition p1types_disp_prebicat_1_id_comp_cells : disp_prebicat_1_id_comp_cells one_types.
Show proof.
Definition p1types_disp_prebicat_ops
: disp_prebicat_ops p1types_disp_prebicat_1_id_comp_cells.
Show proof.
Definition p1types_prebicat : disp_prebicat one_types.
Show proof.
Definition p1types_disp : disp_bicat one_types.
Show proof.
Definition p1types : bicat := total_bicat p1types_disp.
Lemma p1types_disp_univalent_2_1 : disp_univalent_2_1 p1types_disp.
Show proof.
Lemma p1types_disp_univalent_2_0 : disp_univalent_2_0 p1types_disp.
Show proof.
Lemma p1types_disp_univalent_2 : disp_univalent_2 p1types_disp.
Show proof.
Lemma p1types_univalent_2 : is_univalent_2 p1types.
Show proof.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.OneTypes.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Local Open Scope cat.
Local Open Scope bicategory_scope.
Definition p1types_disp_prebicat_1_id_comp_cells : disp_prebicat_1_id_comp_cells one_types.
Show proof.
Objects and 1-cells
Objects over a one type are points of X
1-cells over f are properties: f preserves points
Identity and composition of 1-cells: composition of properties
use tpair.
* exact (λ _ _, idpath _).
* exact (λ _ _ _ f g x y z Hf Hg, maponpaths g Hf @ Hg).
- exact (λ _ _ _ _ α x y ff gg, ff = α x @ gg).
* exact (λ _ _, idpath _).
* exact (λ _ _ _ f g x y z Hf Hg, maponpaths g Hf @ Hg).
- exact (λ _ _ _ _ α x y ff gg, ff = α x @ gg).
Definition p1types_disp_prebicat_ops
: disp_prebicat_ops p1types_disp_prebicat_1_id_comp_cells.
Show proof.
repeat split; cbn.
- intros X Y f x y ff.
exact (pathscomp0rid _ @ maponpathsidfun _).
- intros X Y f x y ff.
exact (!(pathscomp0rid _ @ maponpathsidfun _)).
- intros X Y Z W f g h x y z w ff gg hh.
refine (_ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ hh) _).
refine (maponpathscomp0 h (maponpaths g ff) gg @ _).
refine (maponpaths (λ z, z @ _) _).
apply maponpathscomp.
- intros X Y Z W f g h x y z w ff gg hh.
refine (!_).
refine (_ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ hh) _).
refine (maponpathscomp0 h (maponpaths g ff) gg @ _).
refine (maponpaths (λ z, z @ _) _).
apply maponpathscomp.
- intros X Y f g h α β x y ff gg hh αα ββ.
exact (αα @ maponpaths (λ z, _ @ z) ββ @ path_assoc _ _ _).
-
intros X Y Z f g h α x y z ff gg hh αα.
unfold funhomotsec.
refine (maponpaths (λ z, _ @ z) αα @ _).
refine (path_assoc _ _ _ @ _ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ _) _).
apply homotsec_natural.
-
intros X Y Z f g h α x y z ff gg hh αα.
unfold homotfun.
refine (_ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ hh) _).
exact (maponpaths (maponpaths h) αα @ maponpathscomp0 h (α x) gg).
- intros X Y f x y ff.
exact (pathscomp0rid _ @ maponpathsidfun _).
- intros X Y f x y ff.
exact (!(pathscomp0rid _ @ maponpathsidfun _)).
- intros X Y Z W f g h x y z w ff gg hh.
refine (_ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ hh) _).
refine (maponpathscomp0 h (maponpaths g ff) gg @ _).
refine (maponpaths (λ z, z @ _) _).
apply maponpathscomp.
- intros X Y Z W f g h x y z w ff gg hh.
refine (!_).
refine (_ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ hh) _).
refine (maponpathscomp0 h (maponpaths g ff) gg @ _).
refine (maponpaths (λ z, z @ _) _).
apply maponpathscomp.
- intros X Y f g h α β x y ff gg hh αα ββ.
exact (αα @ maponpaths (λ z, _ @ z) ββ @ path_assoc _ _ _).
-
intros X Y Z f g h α x y z ff gg hh αα.
unfold funhomotsec.
refine (maponpaths (λ z, _ @ z) αα @ _).
refine (path_assoc _ _ _ @ _ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ _) _).
apply homotsec_natural.
-
intros X Y Z f g h α x y z ff gg hh αα.
unfold homotfun.
refine (_ @ !(path_assoc _ _ _)).
refine (maponpaths (λ z, z @ hh) _).
exact (maponpaths (maponpaths h) αα @ maponpathscomp0 h (α x) gg).
Definition p1types_prebicat : disp_prebicat one_types.
Show proof.
use tpair.
- exists p1types_disp_prebicat_1_id_comp_cells.
apply p1types_disp_prebicat_ops.
- repeat split; repeat intro; apply one_type_isofhlevel.
- exists p1types_disp_prebicat_1_id_comp_cells.
apply p1types_disp_prebicat_ops.
- repeat split; repeat intro; apply one_type_isofhlevel.
Definition p1types_disp : disp_bicat one_types.
Show proof.
Definition p1types : bicat := total_bicat p1types_disp.
Lemma p1types_disp_univalent_2_1 : disp_univalent_2_1 p1types_disp.
Show proof.
apply fiberwise_local_univalent_is_univalent_2_1.
intros X Y f x y. cbn. intros p q.
use isweq_iso.
- intro α. apply α.
- intros α. apply Y.
- intros α. cbn in *.
use subtypePath.
{
intro. apply (isaprop_is_disp_invertible_2cell (D:=p1types_disp)).
}
apply Y.
intros X Y f x y. cbn. intros p q.
use isweq_iso.
- intro α. apply α.
- intros α. apply Y.
- intros α. cbn in *.
use subtypePath.
{
intro. apply (isaprop_is_disp_invertible_2cell (D:=p1types_disp)).
}
apply Y.
Lemma p1types_disp_univalent_2_0 : disp_univalent_2_0 p1types_disp.
Show proof.
apply fiberwise_univalent_2_0_to_disp_univalent_2_0.
intros X x x'. cbn in *.
use isweq_iso.
- intros f. apply f.
- intro p.
induction p.
apply idpath.
- intros [f Hf].
use subtypePath.
{ intros y y'.
apply (isaprop_disp_left_adjoint_equivalence (D:=p1types_disp)).
+ apply one_types_is_univalent_2.
+ apply p1types_disp_univalent_2_1. }
cbn ; cbn in f.
induction f.
apply idpath.
intros X x x'. cbn in *.
use isweq_iso.
- intros f. apply f.
- intro p.
induction p.
apply idpath.
- intros [f Hf].
use subtypePath.
{ intros y y'.
apply (isaprop_disp_left_adjoint_equivalence (D:=p1types_disp)).
+ apply one_types_is_univalent_2.
+ apply p1types_disp_univalent_2_1. }
cbn ; cbn in f.
induction f.
apply idpath.
Lemma p1types_disp_univalent_2 : disp_univalent_2 p1types_disp.
Show proof.
apply make_disp_univalent_2.
- exact p1types_disp_univalent_2_0.
- exact p1types_disp_univalent_2_1.
- exact p1types_disp_univalent_2_0.
- exact p1types_disp_univalent_2_1.
Lemma p1types_univalent_2 : is_univalent_2 p1types.
Show proof.