Library UniMath.CategoryTheory.Actegories.ConstructionOfActegoryMorphisms

Construction of actegory morphisms
Part Generalization of pointed distributivity laws (a misnomer as it became clear in July 2023) to relative lax commutators in general monoidal categories
  • definition
  • construction of actegory morphism from it
  • composition
Part Closure of the notion of actegory morphisms under
  • the pointwise binary product of functors
  • the pointwise binary coproduct of functors
author: Ralph Matthes 2022

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Functors.
Require Import UniMath.CategoryTheory.Actegories.Actegories.
Require Import UniMath.CategoryTheory.Actegories.MorphismsOfActegories.
Require Import UniMath.CategoryTheory.Actegories.ConstructionOfActegories.
Require Import UniMath.CategoryTheory.coslicecat.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.Actegories.CoproductsInActegories.
Require Import UniMath.CategoryTheory.Actegories.ProductsInActegories.
Require Import UniMath.CategoryTheory.Actegories.ProductActegory.

Local Open Scope cat.

Import BifunctorNotations.
Import MonoidalNotations.
Import ActegoryNotations.

Section ReindexedLineatorAndRelativeLaxCommutator.

  Context {V : category} (Mon_V : monoidal V)
          {W : category} (Mon_W : monoidal W)
          {F : W V} (U : fmonoidal Mon_W Mon_V F).

Section ReindexedLaxLineator.

  Context {C D : category} (ActC : actegory Mon_V C) (ActD : actegory Mon_V D).

Section OnFunctors.

  Context {H : functor C D} (ll : lineator_lax Mon_V ActC ActD H).

  Definition reindexed_lax_lineator_data : lineator_data Mon_W (reindexed_actegory Mon_V ActC Mon_W U)
                                                            (reindexed_actegory Mon_V ActD Mon_W U) H.
  Show proof.
    intros w c. exact (ll (F w) c).

  Lemma reindexed_lax_lineator_laws : lineator_laxlaws Mon_W (reindexed_actegory Mon_V ActC Mon_W U)
                                     (reindexed_actegory Mon_V ActD Mon_W U) H reindexed_lax_lineator_data.
  Show proof.
    split4.
    - intro; intros. apply (lineator_linnatleft _ _ _ _ ll).
    - intro; intros. apply (lineator_linnatright _ _ _ _ ll).
    - intro; intros. cbn. unfold reindexed_lax_lineator_data, reindexed_actor_data.
      etrans.
      2: { repeat rewrite assoc'. apply maponpaths.
           rewrite assoc.
           apply (lineator_preservesactor _ _ _ _ ll). }
      etrans.
      2: { rewrite assoc.
           apply cancel_postcomposition.
           apply pathsinv0, lineator_linnatright. }
      etrans.
      2: { rewrite assoc'.
           apply maponpaths.
           apply functor_comp. }
      apply idpath.
    - intro; intros. cbn. unfold reindexed_lax_lineator_data, reindexed_action_unitor_data.
      etrans.
      2: { apply maponpaths.
           apply (lineator_preservesunitor _ _ _ _ ll). }
      etrans.
      2: { rewrite assoc.
           apply cancel_postcomposition.
           apply pathsinv0, lineator_linnatright. }
      etrans.
      2: { rewrite assoc'.
           apply maponpaths.
           apply functor_comp. }
      apply idpath.

  Definition reindexed_lax_lineator : lineator_lax Mon_W (reindexed_actegory Mon_V ActC Mon_W U)
                                                      (reindexed_actegory Mon_V ActD Mon_W U) H :=
    _,,reindexed_lax_lineator_laws.

End OnFunctors.

Section OnNaturalTransformations.

  Context {H : functor C D} (Hl : lineator_lax Mon_V ActC ActD H)
    {K : functor C D} (Kl : lineator_lax Mon_V ActC ActD K)
    {ξ : H K} (islntξ : is_linear_nat_trans Hl Kl ξ).

  Lemma preserves_linearity_reindexed_lax_lineator :
    is_linear_nat_trans (reindexed_lax_lineator Hl) (reindexed_lax_lineator Kl) ξ.
  Show proof.
    intros w c.
    apply islntξ.

End OnNaturalTransformations.

End ReindexedLaxLineator.

Section RelativeLaxCommutator.

Section FixAnObject.

  Context {v0 : V}.

  Definition relativelaxcommutator_data: UU := (w: W), F w _{Mon_V} v0 --> v0 _{Mon_V} F w.

  Identity Coercion relativelaxcommutator_data_funclass: relativelaxcommutator_data >-> Funclass.

Section γ_laws.

  Context (γ : relativelaxcommutator_data).

  Definition relativelaxcommutator_nat: UU := is_nat_trans (functor_composite F (rightwhiskering_functor Mon_V v0))
                                                           (functor_composite F (leftwhiskering_functor Mon_V v0)) γ.

  Definition relativelaxcommutator_tensor_body (w w' : W): UU :=
    γ (w _{Mon_W} w') = pr1 (fmonoidal_preservestensorstrongly U w w') ⊗^{Mon_V}_{r} v0 · α_{Mon_V} _ _ _ ·
                           F w ⊗^{Mon_V}_{l} γ w' · αinv_{Mon_V} _ _ _ · γ w ⊗^{Mon_V}_{r} F w' ·
                           α_{Mon_V} _ _ _ · v0 ⊗^{Mon_V}_{l} fmonoidal_preservestensordata U w w'.

  Definition relativelaxcommutator_tensor: UU := (w w' : W), relativelaxcommutator_tensor_body w w'.

  Definition relativelaxcommutator_unit: UU :=
    γ I_{Mon_W} = pr1 (fmonoidal_preservesunitstrongly U) ⊗^{Mon_V}_{r} v0 · lu_{Mon_V} v0 ·
                  ruinv_{Mon_V} v0 · v0 ⊗^{Mon_V}_{l} fmonoidal_preservesunit U.

End γ_laws.

Definition relativelaxcommutator: UU := γ : relativelaxcommutator_data,
      relativelaxcommutator_nat γ × relativelaxcommutator_tensor γ × relativelaxcommutator_unit γ.

Definition relativelaxcommutator_lddata (γ : relativelaxcommutator): relativelaxcommutator_data := pr1 γ.
Coercion relativelaxcommutator_lddata : relativelaxcommutator >-> relativelaxcommutator_data.

Definition relativelaxcommutator_ldnat (γ : relativelaxcommutator): relativelaxcommutator_nat γ := pr12 γ.
Definition relativelaxcommutator_ldtensor (γ : relativelaxcommutator): relativelaxcommutator_tensor γ := pr122 γ.
Definition relativelaxcommutator_ldunit (γ : relativelaxcommutator): relativelaxcommutator_unit γ := pr222 γ.

Section ActegoryMorphismFromRelativeLaxCommutator.

  Context (γ : relativelaxcommutator) {C : category} (ActV : actegory Mon_V C).

  Local Definition FF: C C := leftwhiskering_functor ActV v0.
  Local Definition ActW: actegory Mon_W C := reindexed_actegory Mon_V ActV Mon_W U.

  Definition lineator_data_from_commutator: lineator_data Mon_W ActW ActW FF.
  Show proof.
    intros w x. unfold FF. cbn.
    exact (aαinv^{ActV}_{F w, v0, x} · γ w ⊗^{ActV}_{r} x · ^{ActV}_{v0, F w, x}).

  Lemma lineator_laxlaws_from_commutator: lineator_laxlaws Mon_W ActW ActW FF lineator_data_from_commutator.
  Show proof.
    assert (γ_nat := relativelaxcommutator_ldnat γ).
    do 2 red in γ_nat. cbn in γ_nat.
    repeat split; red; intros; unfold lineator_data_from_commutator; try unfold reindexed_actor_data; try unfold reindexed_action_unitor_data; cbn;
      try unfold reindexed_actor_data; try unfold reindexed_action_unitor_data; cbn.
    - etrans.
      { repeat rewrite assoc.
        do 2 apply cancel_postcomposition.
        apply actorinv_nat_leftwhisker. }
      etrans.
      2: { repeat rewrite assoc'.
           do 2 apply maponpaths.
           apply pathsinv0, actegory_actornatleft.
      }
      repeat rewrite assoc'.
      apply maponpaths.
      repeat rewrite assoc.
      apply cancel_postcomposition.
      apply pathsinv0, (bifunctor_equalwhiskers ActV).
    - etrans.
      { repeat rewrite assoc.
        do 2 apply cancel_postcomposition.
        apply actorinv_nat_rightwhisker. }
      etrans.
      2: { repeat rewrite assoc'.
           do 2 apply maponpaths.
           apply pathsinv0, actegory_actornatleftright.
      }
      repeat rewrite assoc'.
      apply maponpaths.
      repeat rewrite assoc.
      apply cancel_postcomposition.
      etrans.
      { apply pathsinv0, (functor_comp (rightwhiskering_functor ActV x)). }
      etrans.
      2: { apply (functor_comp (rightwhiskering_functor ActV x)). }
      apply maponpaths.
      apply γ_nat.
    - etrans.
      { apply maponpaths.
        apply (functor_comp (leftwhiskering_functor ActV v0)). }
      cbn.
      etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        repeat rewrite assoc'.
        do 2 apply maponpaths.
        apply actegory_actornatleftright.
      }
      etrans.
      { repeat rewrite assoc.
        do 2 apply cancel_postcomposition.
        repeat rewrite assoc'.
        apply maponpaths.
        apply pathsinv0, (functor_comp (rightwhiskering_functor ActV x)).
      }
      cbn.
      etrans.
      { do 2 apply cancel_postcomposition.
        do 2 apply maponpaths.
        rewrite (relativelaxcommutator_ldtensor γ).
        repeat rewrite assoc'.
        do 6 apply maponpaths.
        etrans.
        { apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V v0)). }
        apply (functor_id_id _ _ (leftwhiskering_functor Mon_V v0)).
        apply (pr2 (fmonoidal_preservestensorstrongly U v w)).
      }
      rewrite id_right.
      etrans.
      { do 2 apply cancel_postcomposition.
        etrans.
        { apply maponpaths.
          apply (functor_comp (rightwhiskering_functor ActV x)). }
        cbn.
        rewrite assoc.
        apply cancel_postcomposition.
        apply pathsinv0, actorinv_nat_rightwhisker.
      }
      repeat rewrite assoc'.
      apply maponpaths.
      apply (z_iso_inv_on_right _ _ _ (z_iso_from_actor_iso Mon_V ActV _ _ _)).
      etrans.
      { apply cancel_postcomposition.
        repeat rewrite assoc.
        apply (functor_comp (rightwhiskering_functor ActV x)). }
      cbn.
      etrans.
      { rewrite assoc'.
        apply maponpaths.
        rewrite assoc.
        apply actegory_pentagonidentity.
      }
      repeat rewrite assoc.
      apply cancel_postcomposition.
      rewrite <- actegory_pentagonidentity.
      etrans.
      { apply cancel_postcomposition.
        repeat rewrite assoc'.
        apply (functor_comp (rightwhiskering_functor ActV x)). }
      cbn.
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      2: { apply maponpaths.
           etrans.
           2: { apply maponpaths.
                apply cancel_postcomposition.
                apply pathsinv0, (functor_comp (leftwhiskering_functor ActV (F v))). }
           cbn.
           repeat rewrite assoc.
           do 3 apply cancel_postcomposition.
           etrans.
           2: { apply (functor_comp (leftwhiskering_functor ActV (F v))). }
           apply pathsinv0, (functor_id_id _ _ (leftwhiskering_functor ActV (F v))).
           apply (pr1 (actegory_actorisolaw Mon_V ActV _ _ _)).
      }
      rewrite id_left.
      etrans.
      2: { apply maponpaths.
           rewrite assoc'.
           apply cancel_postcomposition.
           apply pathsinv0, (functor_comp (leftwhiskering_functor ActV (F v))).
      }
      cbn.
      etrans.
      2: { repeat rewrite assoc.
           do 3 apply cancel_postcomposition.
           apply pathsinv0, actegory_actornatleftright. }
      etrans.
      { apply cancel_postcomposition.
        apply (functor_comp (rightwhiskering_functor ActV x)). }
      cbn.
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply cancel_postcomposition.
        apply (functor_comp (rightwhiskering_functor ActV x)). }
      cbn.
      etrans.
      { rewrite assoc'.
        apply maponpaths.
        apply pathsinv0, actegory_actornatright. }
      repeat rewrite assoc.
      apply cancel_postcomposition.
      apply (z_iso_inv_on_left _ _ _ _ (z_iso_from_actor_iso Mon_V ActV _ _ _)).
      cbn.
      rewrite assoc'.
      rewrite <- actegory_pentagonidentity.
      etrans.
      2: { repeat rewrite assoc.
           do 2 apply cancel_postcomposition.
           etrans.
           2: { apply (functor_comp (rightwhiskering_functor ActV x)). }
           apply pathsinv0, (functor_id_id _ _ (rightwhiskering_functor ActV x)).
           apply (pr2 (monoidal_associatorisolaw Mon_V _ _ _)).
      }
      rewrite id_left.
      apply idpath.
    - etrans.
      { apply maponpaths.
        apply (functor_comp (leftwhiskering_functor ActV v0)). }
      cbn.
      etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        repeat rewrite assoc'.
        do 2 apply maponpaths.
        apply actegory_actornatleftright.
      }
      etrans.
      { repeat rewrite assoc.
        do 2 apply cancel_postcomposition.
        repeat rewrite assoc'.
        apply maponpaths.
        apply pathsinv0, (functor_comp (rightwhiskering_functor ActV x)).
      }
      cbn.
      etrans.
      { do 2 apply cancel_postcomposition.
        do 2 apply maponpaths.
        rewrite (relativelaxcommutator_ldunit γ).
        repeat rewrite assoc'.
        do 3 apply maponpaths.
        etrans.
        { apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V v0)). }
        apply (functor_id_id _ _ (leftwhiskering_functor Mon_V v0)).
        apply (pr2 (fmonoidal_preservesunitstrongly U)).
      }
      rewrite id_right.
      etrans.
      { do 2 apply cancel_postcomposition.
        etrans.
        { apply maponpaths.
          apply (functor_comp (rightwhiskering_functor ActV x)). }
        cbn.
        rewrite assoc.
        apply cancel_postcomposition.
        apply pathsinv0, actorinv_nat_rightwhisker.
      }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { repeat rewrite assoc'.
        do 2 apply maponpaths.
        apply actegory_triangleidentity. }
      etrans.
      { apply maponpaths.
        apply pathsinv0, (functor_comp (rightwhiskering_functor ActV x)). }
      cbn.
      rewrite assoc'.
      rewrite (pr2 (monoidal_rightunitorisolaw Mon_V v0)).
      rewrite id_right.
      rewrite <- actegory_triangleidentity'.
      rewrite assoc.
      rewrite (pr2 (actegory_actorisolaw Mon_V ActV _ _ _)).
      apply id_left.

  Definition reindexedstrength_from_commutator: reindexedstrength Mon_V Mon_W U ActV ActV FF :=
    lineator_data_from_commutator,,lineator_laxlaws_from_commutator.

End ActegoryMorphismFromRelativeLaxCommutator.

End FixAnObject.

Arguments reindexedstrength_from_commutator _ _ {_} _.
Arguments relativelaxcommutator _ : clear implicits.
Arguments relativelaxcommutator_data _ : clear implicits.

  Definition unit_relativelaxcommutator_data: relativelaxcommutator_data I_{Mon_V}.
  Show proof.
    intro w.
    exact (ru^{Mon_V}_{F w} · luinv^{Mon_V}_{F w}).

  Lemma unit_relativelaxcommutator_nat: relativelaxcommutator_nat unit_relativelaxcommutator_data.
  Show proof.
    intro; intros. unfold unit_relativelaxcommutator_data.
    cbn.
    etrans.
    { rewrite assoc.
      apply cancel_postcomposition.
      apply monoidal_rightunitornat. }
    repeat rewrite assoc'.
    apply maponpaths.
    apply pathsinv0, monoidal_leftunitorinvnat.

  Lemma unit_relativelaxcommutator_tensor: relativelaxcommutator_tensor unit_relativelaxcommutator_data.
  Show proof.
    intro; intros. unfold relativelaxcommutator_tensor_body, unit_relativelaxcommutator_data.
    etrans.
    2: { do 2 apply cancel_postcomposition.
         etrans.
         2: { do 2 apply cancel_postcomposition.
              rewrite assoc'.
              do 2 apply maponpaths.
              apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V _)). }
         apply maponpaths.
         apply pathsinv0, (functor_comp (rightwhiskering_functor Mon_V _)).
    }
    cbn.
    etrans.
    2: { repeat rewrite assoc'.
         apply maponpaths.
         repeat rewrite assoc.
         do 6 apply cancel_postcomposition.
         apply pathsinv0, left_whisker_with_runitor. }
    etrans.
    2: { repeat rewrite assoc.
         do 4 apply cancel_postcomposition.
         repeat rewrite assoc'.
         do 2 apply maponpaths.
         apply pathsinv0, monoidal_triangle_identity_inv. }
    etrans.
    2: { repeat rewrite assoc'.
         do 2 apply maponpaths.
         repeat rewrite assoc.
         do 3 apply cancel_postcomposition.
         etrans.
         2: { apply (functor_comp (rightwhiskering_functor Mon_V _)). }
         apply maponpaths.
         apply pathsinv0, monoidal_rightunitorisolaw.
    }
    rewrite functor_id, id_left.
    etrans.
    2: { do 2 apply maponpaths.
         apply cancel_postcomposition.
         rewrite <- monoidal_triangle_identity'_inv.
         rewrite assoc'.
         apply maponpaths.
         apply pathsinv0, monoidal_associatorisolaw.
    }
    rewrite id_right.
    etrans.
    2: { repeat rewrite assoc'.
         do 2 apply maponpaths.
         apply pathsinv0, monoidal_leftunitorinvnat. }
    do 2 rewrite assoc.
    apply cancel_postcomposition.
    etrans.
    2: { apply cancel_postcomposition.
         apply pathsinv0, monoidal_rightunitornat. }
    etrans.
    2: { rewrite assoc'.
         apply maponpaths.
         apply pathsinv0, fmonoidal_preservestensorstrongly.
    }
    apply pathsinv0, id_right.

  Lemma unit_relativelaxcommutator_unit: relativelaxcommutator_unit unit_relativelaxcommutator_data.
  Show proof.
    unfold relativelaxcommutator_unit, unit_relativelaxcommutator_data.
    etrans.
    2: { do 2 apply cancel_postcomposition.
         rewrite unitors_coincide_on_unit.
         apply pathsinv0, monoidal_rightunitornat. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { apply maponpaths.
         rewrite <- unitorsinv_coincide_on_unit.
         apply pathsinv0, monoidal_leftunitorinvnat. }
    rewrite assoc.
    etrans.
    2: {apply cancel_postcomposition.
        apply pathsinv0, (pr22 (fmonoidal_preservesunitstrongly U)). }
    apply pathsinv0, id_left.

  Definition unit_relativelaxcommutator: relativelaxcommutator I_{Mon_V}.
  Show proof.
    use tpair.
    - exact unit_relativelaxcommutator_data.
    - split3.
      + exact unit_relativelaxcommutator_nat.
      + exact unit_relativelaxcommutator_tensor.
      + exact unit_relativelaxcommutator_unit.

Section CompositionOfRelativeLaxCommutators.

  Context (v1 v2 : V) (γ1 : relativelaxcommutator v1) (γ2 : relativelaxcommutator v2).

  Definition composedrelativelaxcommutator_data: relativelaxcommutator_data (v1 _{Mon_V} v2).
  Show proof.
    red; intros.
    exact (αinv_{Mon_V} _ _ _ · γ1 w ⊗^{Mon_V}_{r} v2 · α_{Mon_V} _ _ _
             · v1 ⊗^{Mon_V}_{l} γ2 w · αinv_{Mon_V} _ _ _).

  Lemma composedrelativelaxcommutator_nat: relativelaxcommutator_nat composedrelativelaxcommutator_data.
  Show proof.
    do 2 red; intros; unfold composedrelativelaxcommutator_data; cbn.
    assert (γ1_nat := relativelaxcommutator_ldnat γ1).
    assert (γ2_nat := relativelaxcommutator_ldnat γ2).
    do 2 red in γ1_nat, γ2_nat; cbn in γ1_nat, γ2_nat.
    etrans.
    { repeat rewrite assoc.
      do 4 apply cancel_postcomposition.
      apply monoidal_associatorinvnatright. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    { rewrite assoc.
      apply cancel_postcomposition.
      apply pathsinv0, (functor_comp (rightwhiskering_functor Mon_V v2)). }
    cbn.
    rewrite γ1_nat.
    etrans.
    { rewrite assoc.
      do 2 apply cancel_postcomposition.
      apply (functor_comp (rightwhiskering_functor Mon_V v2)). }
    cbn.
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { do 2 apply maponpaths.
         apply monoidal_associatorinvnatleft. }
    repeat rewrite assoc.
    apply cancel_postcomposition.
    etrans.
    2: { rewrite assoc'.
         apply maponpaths.
         apply (functor_comp (leftwhiskering_functor Mon_V v1)). }
    cbn.
    rewrite <- γ2_nat.
    etrans.
    2: { apply maponpaths.
         apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V v1)). }
    cbn.
    repeat rewrite assoc.
    apply cancel_postcomposition.
    apply pathsinv0, monoidal_associatornatleftright.

  Lemma composedrelativelaxcommutator_tensor: relativelaxcommutator_tensor composedrelativelaxcommutator_data.
  Show proof.
    do 2 red; intros; unfold composedrelativelaxcommutator_data; cbn.
    rewrite (relativelaxcommutator_ldtensor γ1).
    rewrite (relativelaxcommutator_ldtensor γ2).
    etrans.
    { do 3 apply cancel_postcomposition.
      apply maponpaths.
      etrans.
      { apply (functor_comp (rightwhiskering_functor Mon_V v2)). }
      do 5 rewrite functor_comp.
      cbn.
      apply idpath.
    }
    etrans.
    { apply cancel_postcomposition.
      repeat rewrite assoc'.
      do 9 apply maponpaths.
      etrans.
      { apply (functor_comp (leftwhiskering_functor Mon_V v1)). }
      do 5 rewrite functor_comp.
      cbn.
      apply idpath.
    }
    etrans.
    { repeat rewrite assoc.
      do 15 apply cancel_postcomposition.
      apply pathsinv0, monoidal_associatorinvnatright. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    { do 14 apply maponpaths.
      apply monoidal_associatorinvnatleft. }
    repeat rewrite assoc.
    apply cancel_postcomposition.
    etrans.
    2: { do 3 apply cancel_postcomposition.
         apply maponpaths.
         etrans.
         2: { apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V (F w))). }
      do 3 rewrite functor_comp.
      cbn.
      apply idpath.
    }
    etrans.
    2: { apply cancel_postcomposition.
         repeat rewrite assoc'.
         do 7 apply maponpaths.
         etrans.
         2: { apply pathsinv0, (functor_comp (rightwhiskering_functor Mon_V (F w'))). }
      do 3 rewrite functor_comp.
      cbn.
      apply idpath.
    }
    etrans.
    { do 6 apply cancel_postcomposition.
      repeat rewrite assoc'.
      do 6 apply maponpaths.
      etrans.
      { apply maponpaths.
        apply monoidal_associatornatleftright. }
      rewrite assoc.
      apply cancel_postcomposition.
      etrans.
      { apply pathsinv0, (functor_comp (rightwhiskering_functor Mon_V v2)). }
      apply maponpaths.
      etrans.
      { apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V v1)). }
      apply (functor_id_id _ _ (leftwhiskering_functor Mon_V v1)).
      apply (pr2 (fmonoidal_preservestensorstrongly U w w')).
    }
    rewrite functor_id.
    rewrite id_left.
    etrans.
    { repeat rewrite assoc'. apply idpath. }
    apply (z_iso_inv_on_right _ _ _ (z_iso_from_associator_iso Mon_V _ _ _)).
    cbn.
    etrans.
    2: { repeat rewrite assoc.
         do 11 apply cancel_postcomposition.
         etrans.
         2: { apply cancel_postcomposition.
              apply monoidal_pentagonidentity. }
         repeat rewrite assoc'.
         do 2 apply maponpaths.
         etrans.
         2: { apply (functor_comp (leftwhiskering_functor Mon_V (F w))). }
         apply pathsinv0, (functor_id_id _ _ (leftwhiskering_functor Mon_V (F w))).
         apply (pr1 (monoidal_associatorisolaw Mon_V _ _ _)).
    }
    rewrite id_right.
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { repeat rewrite assoc.
         do 10 apply cancel_postcomposition.
         apply pathsinv0, monoidal_associatornatleftright. }
    repeat rewrite assoc'.
    apply maponpaths.
    apply (z_iso_inv_on_right _ _ _ (functor_on_z_iso (rightwhiskering_functor Mon_V v2) (z_iso_from_associator_iso Mon_V _ _ _))).
    cbn.
    etrans.
    2: { repeat rewrite assoc.
         do 9 apply cancel_postcomposition.
         apply pathsinv0, monoidal_pentagonidentity. }
    etrans.
    { repeat rewrite assoc. apply idpath. }
    apply pathsinv0, (z_iso_inv_on_left _ _ _ _ (z_iso_from_associator_iso Mon_V _ _ _)).
    cbn.
    etrans.
    2: { repeat rewrite assoc'.
         do 9 apply maponpaths.
         etrans.
         2: { apply maponpaths.
              apply monoidal_pentagonidentity. }
         repeat rewrite assoc.
         do 2 apply cancel_postcomposition.
         etrans.
         2: { apply (functor_comp (rightwhiskering_functor Mon_V _)). }
         apply pathsinv0, (functor_id_id _ _ (rightwhiskering_functor Mon_V (F w'))).
         apply (pr2 (monoidal_associatorisolaw Mon_V _ _ _)).
    }
    rewrite id_left.
    repeat rewrite assoc.
    apply cancel_postcomposition.
    etrans.
    { do 3 apply cancel_postcomposition.
      repeat rewrite assoc'.
      apply maponpaths.
      rewrite assoc.
      apply monoidal_pentagonidentity. }
    etrans.
    { repeat rewrite assoc.
      do 4 apply cancel_postcomposition.
      apply pathsinv0, monoidal_associatornatright. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    { apply maponpaths.
      repeat rewrite assoc.
      do 2 apply cancel_postcomposition.
      apply monoidal_associatornatleft. }
    etrans.
    { repeat rewrite assoc.
      do 3 apply cancel_postcomposition.
      apply (bifunctor_equalwhiskers Mon_V). }
    unfold functoronmorphisms2.
    etrans.
    2: { repeat rewrite assoc.
         do 7 apply cancel_postcomposition.
         apply pathsinv0, monoidal_associatornatleft. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    2: { repeat rewrite assoc.
         do 4 apply cancel_postcomposition.
         etrans.
         2: { repeat rewrite assoc'.
              apply maponpaths.
              rewrite assoc.
              apply pathsinv0, monoidal_pentagon_identity_inv. }
         rewrite assoc.
         apply cancel_postcomposition.
         apply pathsinv0, (pr1 (monoidal_associatorisolaw Mon_V _ _ _)).
    }
    rewrite id_left.
    etrans.
    2: { repeat rewrite assoc'.
         do 3 apply maponpaths.
         apply monoidal_associatornatleftright. }
    repeat rewrite assoc.
    apply cancel_postcomposition.
    repeat rewrite assoc'.
    apply pathsinv0, (z_iso_inv_on_right _ _ _ (z_iso_from_associator_iso Mon_V _ _ _)).
    cbn.
    etrans.
    2: { repeat rewrite assoc.
         do 2 apply cancel_postcomposition.
         apply pathsinv0, monoidal_associatornatright. }
    repeat rewrite assoc'.
    apply maponpaths.
    rewrite assoc.
    apply (z_iso_inv_on_left _ _ _ _ (functor_on_z_iso (leftwhiskering_functor Mon_V v1) (z_iso_from_associator_iso Mon_V _ _ _))).
    cbn.
    apply pathsinv0, monoidal_pentagonidentity.

  Lemma composedrelativelaxcommutator_unit: relativelaxcommutator_unit composedrelativelaxcommutator_data.
  Show proof.
    red; unfold composedrelativelaxcommutator_data; cbn.
    rewrite (relativelaxcommutator_ldunit γ1).
    rewrite (relativelaxcommutator_ldunit γ2).
    etrans.
    { do 3 apply cancel_postcomposition.
      apply maponpaths.
      etrans.
      { apply (functor_comp (rightwhiskering_functor Mon_V v2)). }
      do 2 rewrite functor_comp.
      cbn.
      apply idpath.
    }
    etrans.
    { apply cancel_postcomposition.
      repeat rewrite assoc'.
      do 6 apply maponpaths.
      etrans.
      { apply (functor_comp (leftwhiskering_functor Mon_V v1)). }
      do 2 rewrite functor_comp.
      cbn.
      apply idpath.
    }
    etrans.
    { repeat rewrite assoc.
      do 9 apply cancel_postcomposition.
      apply pathsinv0, monoidal_associatorinvnatright. }
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    { repeat rewrite assoc.
      do 8 apply cancel_postcomposition.
      rewrite <- monoidal_triangleidentity'.
      rewrite assoc.
      apply cancel_postcomposition.
      apply (pr2 (monoidal_associatorisolaw Mon_V _ _ _)).
    }
    rewrite id_left.
    repeat rewrite assoc'.
    apply maponpaths.
    etrans.
    { do 6 apply maponpaths.
      apply monoidal_associatorinvnatleft. }
    repeat rewrite assoc.
    apply cancel_postcomposition.
    etrans.
    { do 4 apply cancel_postcomposition.
      rewrite assoc'.
      apply maponpaths.
      apply pathsinv0, monoidal_associatornatleftright.
    }
    etrans.
    { do 3 apply cancel_postcomposition.
      repeat rewrite assoc'.
      do 2 apply maponpaths.
      etrans.
      { apply pathsinv0, (functor_comp (leftwhiskering_functor Mon_V v1)). }
      apply maponpaths.
      etrans.
      { apply pathsinv0, (functor_comp (rightwhiskering_functor Mon_V v2)). }
      apply (functor_id_id _ _ (rightwhiskering_functor Mon_V v2)).
      apply (pr2 (fmonoidal_preservesunitstrongly U)).
    }
    rewrite functor_id.
    rewrite id_right.
    etrans.
    { repeat rewrite assoc'.
      do 3 apply maponpaths.
      apply monoidal_triangle_identity''_inv. }
    etrans.
    { apply maponpaths.
      rewrite assoc.
      apply cancel_postcomposition.
      apply monoidal_triangleidentity. }
    rewrite assoc.
    etrans.
    { apply cancel_postcomposition.
      etrans.
      { apply pathsinv0, (functor_comp (rightwhiskering_functor Mon_V v2)). }
      apply (functor_id_id _ _ (rightwhiskering_functor Mon_V v2)).
      apply (monoidal_rightunitorisolaw Mon_V).
    }
    apply id_left.

  Definition composedrelativelaxcommutator: relativelaxcommutator (v1 _{Mon_V} v2).
  Show proof.

End CompositionOfRelativeLaxCommutators.

End RelativeLaxCommutator.

End ReindexedLineatorAndRelativeLaxCommutator.

Arguments relativelaxcommutator {_} _ {_} _ {_} _ _.
Arguments relativelaxcommutator_data {_} _ {_ _} _.

Section PointwiseOperationsOnLinearFunctors.

  Context {V : category} (Mon_V : monoidal V)
    {C D : category}
    (ActC : actegory Mon_V C) (ActD : actegory Mon_V D).

Section PointwiseBinaryOperationsOnLinearFunctors.

  Context {F1 F2 : functor C D}
    (ll1 : lineator_lax Mon_V ActC ActD F1)
    (ll2 : lineator_lax Mon_V ActC ActD F2).

Section PointwiseBinaryProductOfLinearFunctors.

  Context (BPD : BinProducts D).

  Let FF : functor C D := BinProduct_of_functors _ _ BPD F1 F2.
  Let FF' : functor C D := BinProduct_of_functors_alt BPD F1 F2.

  Definition lax_lineator_binprod_aux: lineator_lax Mon_V ActC ActD FF'.
  Show proof.
    use comp_lineator_lax.
    - apply actegory_binprod; assumption.
    - apply actegory_binprod_delta_lineator.
    - use comp_lineator_lax.
      + apply actegory_binprod; assumption.
      + apply actegory_pair_functor_lineator; assumption.
      + apply binprod_functor_lax_lineator.

  Definition lax_lineator_binprod_indirect: lineator_lax Mon_V ActC ActD FF.
  Show proof.
    unfold FF.
    rewrite <- BinProduct_of_functors_alt_eq_BinProduct_of_functors.
    apply lax_lineator_binprod_aux.

  Lemma lax_lineator_binprod_indirect_data_ok (v : V) (c : C):
    lax_lineator_binprod_indirect v c =
      binprod_collector_data Mon_V BPD ActD v (F1 c) (F2 c) ·
        BinProductOfArrows _ (BPD _ _) (BPD _ _) (ll1 v c) (ll2 v c).
  Show proof.
    unfold lax_lineator_binprod_indirect.
  Abort.

now an alternative concrete construction
  Definition lineator_data_binprod: lineator_data Mon_V ActC ActD FF.
  Proof.
    intros v c.
    exact (binprod_collector_data Mon_V BPD ActD v (F1 c) (F2 c) ·
        BinProductOfArrows _ (BPD _ _) (BPD _ _) (ll1 v c) (ll2 v c)).

  Let cll : lineator_lax Mon_V (actegory_binprod Mon_V ActD ActD) ActD (binproduct_functor BPD)
      := binprod_functor_lax_lineator Mon_V BPD ActD.

  Lemma lineator_laxlaws_binprod: lineator_laxlaws Mon_V ActC ActD FF lineator_data_binprod.
  Show proof.
    repeat split; red; intros; unfold lineator_data_binprod.
    - etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_linnatleft _ _ _ _ cll v (_,,_) (_,,_) (_,,_)). }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply BinProductOfArrows_comp. }
      etrans.
      2: { apply pathsinv0, BinProductOfArrows_comp. }
      apply maponpaths_12; apply lineator_linnatleft.
    - etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_linnatright _ _ _ _ cll v1 v2 (_,,_) f). }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply BinProductOfArrows_comp. }
      etrans.
      2: { apply pathsinv0, BinProductOfArrows_comp. }
      apply maponpaths_12; apply lineator_linnatright.
    - etrans.
      { rewrite assoc'.
        apply maponpaths.
        etrans.
        { apply BinProductOfArrows_comp. }
        apply maponpaths_12; apply lineator_preservesactor.
      }
      etrans.
      { apply maponpaths.
        repeat rewrite assoc'.
        apply pathsinv0, BinProductOfArrows_comp. }
      etrans.
      { rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_preservesactor _ _ _ _ cll v w (_,,_)). }
      etrans.
      2: { apply cancel_postcomposition.
           apply maponpaths.
           apply pathsinv0, (functor_comp (leftwhiskering_functor ActD v)). }
      repeat rewrite assoc'.
      do 2 apply maponpaths.
      repeat rewrite assoc.
      etrans.
      2: { apply cancel_postcomposition.
           apply pathsinv0, (lineator_linnatleft _ _ _ _ cll v (_,,_) (_,,_) (_,,_)). }
      rewrite assoc'.
      apply maponpaths.
      etrans.
      2: { apply pathsinv0, BinProductOfArrows_comp. }
      apply idpath.
    - etrans.
      2: { apply (lineator_preservesunitor _ _ _ _ cll (_,,_)). }
      rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply BinProductOfArrows_comp. }
      cbn.
      apply maponpaths_12; apply lineator_preservesunitor.

  Definition lax_lineator_binprod: lineator_lax Mon_V ActC ActD FF :=
    lineator_data_binprod,,lineator_laxlaws_binprod.

End PointwiseBinaryProductOfLinearFunctors.

Section PointwiseBinaryCoproductOfLinearFunctors.

  Context (BCD : BinCoproducts D) (δ : actegory_bincoprod_distributor Mon_V BCD ActD).

  Let FF : functor C D := BinCoproduct_of_functors _ _ BCD F1 F2.
  Let FF' : functor C D := BinCoproduct_of_functors_alt2 BCD F1 F2.

  Definition lax_lineator_bincoprod_aux : lineator_lax Mon_V ActC ActD FF'.
  Show proof.
    use comp_lineator_lax.
    - apply actegory_binprod; assumption.
    - apply actegory_binprod_delta_lineator.
    - use comp_lineator_lax.
      + apply actegory_binprod; assumption.
      + apply actegory_pair_functor_lineator; assumption.
      + apply (bincoprod_functor_lineator Mon_V BCD ActD δ).

  Definition lax_lineator_bincoprod_indirect : lineator_lax Mon_V ActC ActD FF.
  Show proof.
    unfold FF.
    rewrite <- BinCoproduct_of_functors_alt_eq_BinCoproduct_of_functors.
    apply lax_lineator_bincoprod_aux.

  Lemma lax_lineator_bincoprod_data_ok (v : V) (c : C) : lax_lineator_bincoprod_indirect v c =
    δ v (F1 c) (F2 c) · (BinCoproductOfArrows _ (BCD _ _) (BCD _ _) (ll1 v c) (ll2 v c)).
  Show proof.
    unfold lax_lineator_bincoprod_indirect.
  Abort.

now an alternative concrete construction
  Definition lineator_data_bincoprod: lineator_data Mon_V ActC ActD FF.
  Proof.
    intros v c.
    exact (δ v (F1 c) (F2 c) · (BinCoproductOfArrows _ (BCD _ _) (BCD _ _) (ll1 v c) (ll2 v c))).

  Let δll : lineator Mon_V (actegory_binprod Mon_V ActD ActD) ActD (bincoproduct_functor BCD)
      := bincoprod_functor_lineator Mon_V BCD ActD δ.

  Lemma lineator_laxlaws_bincoprod
    : lineator_laxlaws Mon_V ActC ActD FF lineator_data_bincoprod.
  Show proof.
    repeat split; red; intros; unfold lineator_data_bincoprod.
    - etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_linnatleft _ _ _ _ δll v (_,,_) (_,,_) (_,,_)). }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply BinCoproductOfArrows_comp. }
      etrans.
      2: { apply pathsinv0, BinCoproductOfArrows_comp. }
      apply maponpaths_12; apply lineator_linnatleft.
    - etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_linnatright _ _ _ _ δll v1 v2 (_,,_) f). }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply BinCoproductOfArrows_comp. }
      etrans.
      2: { apply pathsinv0, BinCoproductOfArrows_comp. }
      apply maponpaths_12; apply lineator_linnatright.
    - etrans.
      { rewrite assoc'.
        apply maponpaths.
        etrans.
        { apply BinCoproductOfArrows_comp. }
        apply maponpaths_12; apply lineator_preservesactor.
      }
      etrans.
      { apply maponpaths.
        repeat rewrite assoc'.
        apply pathsinv0, BinCoproductOfArrows_comp. }
      etrans.
      { rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_preservesactor _ _ _ _ δll v w (_,,_)). }
      etrans.
      2: { apply cancel_postcomposition.
           apply maponpaths.
           apply pathsinv0, (functor_comp (leftwhiskering_functor ActD v)). }
      repeat rewrite assoc'.
      do 2 apply maponpaths.
      repeat rewrite assoc.
      etrans.
      2: { apply cancel_postcomposition.
           apply pathsinv0, (lineator_linnatleft _ _ _ _ δll v (_,,_) (_,,_) (_,,_)). }
      rewrite assoc'.
      apply maponpaths.
      etrans.
      2: { apply pathsinv0, BinCoproductOfArrows_comp. }
      apply idpath.
    - etrans.
      2: { apply (lineator_preservesunitor _ _ _ _ δll (_,,_)). }
      rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply BinCoproductOfArrows_comp. }
      cbn.
      apply maponpaths_12; apply lineator_preservesunitor.

  Definition lax_lineator_bincoprod: lineator_lax Mon_V ActC ActD FF :=
    lineator_data_bincoprod,,lineator_laxlaws_bincoprod.

End PointwiseBinaryCoproductOfLinearFunctors.

End PointwiseBinaryOperationsOnLinearFunctors.

Section PointwiseCoproductOfLinearFunctors.

  Context {I : UU} {F : I -> functor C D}
    (ll : (i: I), lineator_lax Mon_V ActC ActD (F i))
    (CD : Coproducts I D) (δ : actegory_coprod_distributor Mon_V CD ActD).

  Let FF : functor C D := coproduct_of_functors _ _ _ CD F.
  Let FF' : functor C D := coproduct_of_functors_alt_old _ CD F.

  Definition lax_lineator_coprod_aux : lineator_lax Mon_V ActC ActD FF'.
  Show proof.
    use comp_lineator_lax.
    - apply actegory_power; assumption.
    - apply actegory_prod_delta_lineator.
    - use comp_lineator_lax.
      + apply actegory_power; assumption.
      + apply actegory_family_functor_lineator; assumption.
      + apply (coprod_functor_lineator Mon_V CD ActD δ).

  Definition lax_lineator_coprod_indirect : lineator_lax Mon_V ActC ActD FF.
  Show proof.
    unfold FF.
    rewrite <- coproduct_of_functors_alt_old_eq_coproduct_of_functors.
    apply lax_lineator_coprod_aux.

  Lemma lax_lineator_coprod_data_ok (v : V) (c : C) : lax_lineator_coprod_indirect v c =
    δ v (fun i => F i c) · (CoproductOfArrows I _ (CD _) (CD _) (fun i => ll i v c)).
  Show proof.
    unfold lax_lineator_coprod_indirect.
  Abort.

now an alternative concrete construction
  Definition lineator_data_coprod: lineator_data Mon_V ActC ActD FF.
  Proof.
    intros v c.
    exact (δ v (fun i => F i c) · (CoproductOfArrows I _ (CD _) (CD _) (fun i => ll i v c))).

  Let δll : lineator Mon_V (actegory_power Mon_V I ActD) ActD (coproduct_functor I CD)
      := coprod_functor_lineator Mon_V CD ActD δ.

  Lemma lineator_laxlaws_coprod
    : lineator_laxlaws Mon_V ActC ActD FF lineator_data_coprod.
  Show proof.
    repeat split; red; intros; unfold lineator_data_coprod.
    - etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_linnatleft _ _ _ _ δll v). }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply CoproductOfArrows_comp. }
      etrans.
      2: { apply pathsinv0, CoproductOfArrows_comp. }
      apply maponpaths, funextsec; intro i; apply lineator_linnatleft.
    - etrans.
      { repeat rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_linnatright _ _ _ _ δll v1 v2 _ f). }
      repeat rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply CoproductOfArrows_comp. }
      etrans.
      2: { apply pathsinv0, CoproductOfArrows_comp. }
      apply maponpaths, funextsec; intro i; apply lineator_linnatright.
    - etrans.
      { rewrite assoc'.
        apply maponpaths.
        etrans.
        { apply CoproductOfArrows_comp. }
        cbn.
        apply maponpaths, funextsec; intro i; apply lineator_preservesactor.
      }
      etrans.
      { apply maponpaths.
        assert (aux : (fun i => ^{ ActD }_{ v, w, F i x} · v ⊗^{ ActD}_{l} ll i w x · ll i v (w _{ ActC} x))
                      = (fun i => ^{ ActD }_{ v, w, F i x} · (v ⊗^{ ActD}_{l} ll i w x · ll i v (w _{ ActC} x)))).
        { apply funextsec; intro i; apply assoc'. }
        rewrite aux.
        apply pathsinv0, CoproductOfArrows_comp. }
      etrans.
      { rewrite assoc.
        apply cancel_postcomposition.
        apply (lineator_preservesactor _ _ _ _ δll v w).
      }
      etrans.
      2: { apply cancel_postcomposition.
           apply maponpaths.
           apply pathsinv0, (functor_comp (leftwhiskering_functor ActD v)). }
      repeat rewrite assoc'.
      do 2 apply maponpaths.
      repeat rewrite assoc.
      etrans.
      2: { apply cancel_postcomposition.
           apply pathsinv0, (lineator_linnatleft _ _ _ _ δll v). }
      rewrite assoc'.
      apply maponpaths.
      etrans.
      2: { apply pathsinv0, CoproductOfArrows_comp. }
      apply idpath.
    - etrans.
      2: { apply (lineator_preservesunitor _ _ _ _ δll). }
      rewrite assoc'.
      apply maponpaths.
      etrans.
      { apply CoproductOfArrows_comp. }
      cbn.
      apply maponpaths, funextsec; intro i; apply lineator_preservesunitor.

  Definition lax_lineator_coprod: lineator_lax Mon_V ActC ActD FF :=
    lineator_data_coprod,,lineator_laxlaws_coprod.

End PointwiseCoproductOfLinearFunctors.

End PointwiseOperationsOnLinearFunctors.