Library UniMath.CategoryTheory.Monoidal.Comonoids.Symmetric
In this file, the symmetric monoidal category of comonoids internal to a symmetric monoidal category is defined.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Projection.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Sigma.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Functors.
Import BifunctorNotations.
Require Import UniMath.CategoryTheory.Monoidal.Structure.Symmetric.
Require Import UniMath.CategoryTheory.Monoidal.Structure.SymmetricDiagonal.
Require Import UniMath.CategoryTheory.Monoidal.Structure.Cartesian.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.WhiskeredDisplayedBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.Monoidal.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.Symmetric.
Require Import UniMath.CategoryTheory.Monoidal.Examples.Sigma.
Require Import UniMath.CategoryTheory.Monoidal.Examples.Fullsub.
Require Import UniMath.CategoryTheory.Monoidal.Examples.DiagonalFunctor.
Require Import UniMath.CategoryTheory.Monoidal.Examples.ConstantFunctor.
Require Import UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids.
Require Import UniMath.CategoryTheory.categories.Dialgebras.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalDialgebras.
Require Import UniMath.CategoryTheory.Monoidal.Examples.SymmetricMonoidalDialgebras.
Require Import UniMath.CategoryTheory.Monoidal.Comonoids.Category.
Require Import UniMath.CategoryTheory.Monoidal.Comonoids.Tensor.
Require Import UniMath.CategoryTheory.Monoidal.Comonoids.Monoidal.
Local Open Scope cat.
Import MonoidalNotations.
Import ComonoidNotations.
Section SymmetricMonoidalCategoryOfComonoids.
Context (V : sym_monoidal_cat).
Definition disp_symmetric_comonoids_data
: disp_symmetric (disp_monoidal_comonoids_data V) V.
Show proof.
use dirprod_disp_cat_symmetric_monoidal.
- use dialgebra_disp_symmetric_monoidal.
+ apply V.
+ apply is_symmetric_monoidal_identity.
+ apply diag_functor_is_symmetric.
- use dialgebra_disp_symmetric_monoidal.
+ apply V.
+ apply is_symmetric_monoidal_identity.
+ apply constant_functor_is_symmetric.
refine (sym_mon_braiding_lunitor _ _ @ _).
apply pathsinv0.
apply unitors_coincide_on_unit.
- use dialgebra_disp_symmetric_monoidal.
+ apply V.
+ apply is_symmetric_monoidal_identity.
+ apply diag_functor_is_symmetric.
- use dialgebra_disp_symmetric_monoidal.
+ apply V.
+ apply is_symmetric_monoidal_identity.
+ apply constant_functor_is_symmetric.
refine (sym_mon_braiding_lunitor _ _ @ _).
apply pathsinv0.
apply unitors_coincide_on_unit.
Definition disp_symmetric_comonoids
: disp_symmetric (disp_monoidal_comonoids V) V.
Show proof.
use (sigma_disp_cat_monoidal_symmetric).
- exact disp_symmetric_comonoids_data.
- apply disp_symmetric_fullsub.
- exact disp_symmetric_comonoids_data.
- apply disp_symmetric_fullsub.
Definition symmetric_cat_comonoids
: sym_monoidal_cat.
Show proof.
Definition disp_symmetric_commutative_comonoids
: disp_symmetric (disp_monoidal_commutative_comonoids V) V.
Show proof.
use (sigma_disp_cat_monoidal_symmetric).
- exact disp_symmetric_comonoids.
- apply disp_symmetric_fullsub.
- exact disp_symmetric_comonoids.
- apply disp_symmetric_fullsub.
Definition symmetric_cat_commutative_comonoids
: sym_monoidal_cat.
Show proof.
exists (monoidal_cat_of_commutative_comonoids V).
exact (total_symmetric _ disp_symmetric_commutative_comonoids).
exact (total_symmetric _ disp_symmetric_commutative_comonoids).
End SymmetricMonoidalCategoryOfComonoids.