Library UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.ToposNatUniv
- The natural numbers object must be contained in the universe.
- The subobject classifier must be contained in the universe.
- The universe must contain every proposition. This corresponds to propositional resizing.
- The universe must be closed under ∑-types and ∏-types.
- "Universes in toposes" by Streicher
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Arithmetic.ParameterizedNNO.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.StrictInitial.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.DisjointBinCoproducts.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.LocallyCartesianClosed.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.Preservation.
Require Import UniMath.CategoryTheory.RegularAndExact.RegularCategory.
Require Import UniMath.CategoryTheory.RegularAndExact.RegularEpi.
Require Import UniMath.CategoryTheory.RegularAndExact.ExactCategory.
Require Import UniMath.CategoryTheory.SubobjectClassifier.SubobjectClassifier.
Require Import UniMath.CategoryTheory.SubobjectClassifier.PreservesSubobjectClassifier.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Reindex.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.ProductDispBiequiv.
Require Import UniMath.Bicategories.DisplayedBicats.ReindexBiequivalence.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.PseudoFunctors.BiequivalenceCoherent.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.TypeFormers.PiTypes.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.Examples.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatExamples.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.PiTypesBiequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty.
Require Import UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.Pretopos.
Require Import UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.PiPretopos.
Require Import UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.ToposNat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.UniverseBiequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.DFLCompCatUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.Constant.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.Resizing.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.Sigma.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.PiTypes.
Local Open Scope cat.
Local Open Scope comp_cat.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Arithmetic.ParameterizedNNO.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.StrictInitial.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.DisjointBinCoproducts.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.LocallyCartesianClosed.
Require Import UniMath.CategoryTheory.LocallyCartesianClosed.Preservation.
Require Import UniMath.CategoryTheory.RegularAndExact.RegularCategory.
Require Import UniMath.CategoryTheory.RegularAndExact.RegularEpi.
Require Import UniMath.CategoryTheory.RegularAndExact.ExactCategory.
Require Import UniMath.CategoryTheory.SubobjectClassifier.SubobjectClassifier.
Require Import UniMath.CategoryTheory.SubobjectClassifier.PreservesSubobjectClassifier.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Reindex.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.ProductDispBiequiv.
Require Import UniMath.Bicategories.DisplayedBicats.ReindexBiequivalence.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.PseudoFunctors.BiequivalenceCoherent.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.TypeFormers.PiTypes.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.Examples.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatExamples.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.PiTypesBiequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty.
Require Import UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.Pretopos.
Require Import UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.PiPretopos.
Require Import UniMath.Bicategories.ComprehensionCat.InternalLanguageTopos.ToposNat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.UniverseBiequiv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.DFLCompCatUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.Constant.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.Resizing.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.Sigma.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatTypes.PiTypes.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition disp_bicat_of_univ_topos_with_NNO_univ
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
disp_bicat_of_univ_topos_with_NNO
disp_bicat_finlim_universe.
Proposition disp_2cells_isaprop_disp_bicat_of_univ_topos_with_NNO_univ
: disp_2cells_isaprop disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_locally_groupoid_disp_bicat_of_univ_topos_with_NNO_univ
: disp_locally_groupoid disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_of_univ_topos_with_NNO_univ
: disp_univalent_2 disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_of_univ_topos_with_NNO_univ
: disp_univalent_2_0 disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_of_univ_topos_with_NNO_univ
: disp_univalent_2_1 disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition bicat_of_univ_topos_with_NNO_univ
: bicat
:= total_bicat disp_bicat_of_univ_topos_with_NNO_univ.
Proposition is_univalent_2_bicat_of_univ_topos_with_NNO_univ
: is_univalent_2 bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition is_univalent_2_0_bicat_of_univ_topos_with_NNO_univ
: is_univalent_2_0 bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ
: is_univalent_2_1 bicat_of_univ_topos_with_NNO_univ.
Show proof.
: disp_bicat bicat_of_univ_cat_with_finlim
:= disp_dirprod_bicat
disp_bicat_of_univ_topos_with_NNO
disp_bicat_finlim_universe.
Proposition disp_2cells_isaprop_disp_bicat_of_univ_topos_with_NNO_univ
: disp_2cells_isaprop disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
use disp_2cells_isaprop_prod.
- exact disp_2cells_isaprop_disp_bicat_of_univ_topos_with_NNO.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_2cells_isaprop_disp_bicat_of_univ_topos_with_NNO.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
Proposition disp_locally_groupoid_disp_bicat_of_univ_topos_with_NNO_univ
: disp_locally_groupoid disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
use disp_locally_groupoid_prod.
- exact disp_locally_groupoid_disp_bicat_of_univ_topos_with_NNO.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_of_univ_topos_with_NNO.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
Proposition disp_univalent_2_disp_bicat_of_univ_topos_with_NNO_univ
: disp_univalent_2 disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
use is_univalent_2_dirprod_bicat.
- exact is_univalent_2_1_bicat_of_univ_cat_with_finlim.
- exact disp_univalent_2_disp_bicat_of_univ_topos_with_NNO.
- exact disp_univalent_2_disp_bicat_finlim_universe.
- exact is_univalent_2_1_bicat_of_univ_cat_with_finlim.
- exact disp_univalent_2_disp_bicat_of_univ_topos_with_NNO.
- exact disp_univalent_2_disp_bicat_finlim_universe.
Proposition disp_univalent_2_0_disp_bicat_of_univ_topos_with_NNO_univ
: disp_univalent_2_0 disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_of_univ_topos_with_NNO_univ
: disp_univalent_2_1 disp_bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition bicat_of_univ_topos_with_NNO_univ
: bicat
:= total_bicat disp_bicat_of_univ_topos_with_NNO_univ.
Proposition is_univalent_2_bicat_of_univ_topos_with_NNO_univ
: is_univalent_2 bicat_of_univ_topos_with_NNO_univ.
Show proof.
use total_is_univalent_2.
- exact disp_univalent_2_disp_bicat_of_univ_topos_with_NNO_univ.
- exact is_univalent_2_bicat_of_univ_cat_with_finlim.
- exact disp_univalent_2_disp_bicat_of_univ_topos_with_NNO_univ.
- exact is_univalent_2_bicat_of_univ_cat_with_finlim.
Proposition is_univalent_2_0_bicat_of_univ_topos_with_NNO_univ
: is_univalent_2_0 bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ
: is_univalent_2_1 bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition univ_topos_with_NNO_univ
: UU
:= bicat_of_univ_topos_with_NNO_univ.
Coercion univ_topos_with_NNO_to_univ_pretopos
(E : univ_topos_with_NNO_univ)
: univ_pretopos.
Show proof.
Definition univ_topos_with_NNO_univ_subobject_classifier
(E : univ_topos_with_NNO_univ)
: subobject_classifier (terminal_univ_cat_with_finlim E)
:= pr211 (pr112 E).
Definition univ_topos_with_NNO_univ_NNO
(E : univ_topos_with_NNO_univ)
: parameterized_NNO
(terminal_univ_cat_with_finlim E)
(binproducts_univ_cat_with_finlim E)
:= pr21 (pr112 E).
Definition is_locally_cartesian_closed_univ_topos_with_NNO_univ
(E : univ_topos_with_NNO_univ)
: is_locally_cartesian_closed (pullbacks_univ_cat_with_finlim E)
:= pr1 (pr212 E).
Coercion cat_with_ob_univ_topos_with_NNO_universe
(E : univ_topos_with_NNO_univ)
: univ_cat_with_finlim_universe.
Show proof.
Definition make_univ_topos_with_NNO
(E : univ_pi_pretopos)
(Ω : subobject_classifier (terminal_univ_cat_with_finlim E))
(N : parameterized_NNO
(terminal_univ_cat_with_finlim E)
(binproducts_univ_cat_with_finlim E))
(u : E)
(el : cat_stable_el_map (pretopos_to_finlim E ,, u))
(H : is_coherent_cat_stable_el_map el)
: univ_topos_with_NNO_univ.
Show proof.
Definition functor_topos_with_NNO_univ
(E₁ E₂ : univ_topos_with_NNO_univ)
: UU
:= E₁ --> E₂.
Coercion functor_topos_with_NNO_univ_to_functor_pretopos
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: functor_pretopos E₁ E₂.
Show proof.
Definition preserves_subobject_classifier_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: preserves_subobject_classifier
F
(terminal_univ_cat_with_finlim E₁)
(terminal_univ_cat_with_finlim E₂)
(functor_finlim_preserves_terminal F)
:= pr212 (pr112 F).
Definition preserves_NNO_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: preserves_parameterized_NNO
(univ_topos_with_NNO_univ_NNO E₁)
(univ_topos_with_NNO_univ_NNO E₂)
F
(functor_finlim_preserves_terminal F)
:= pr22 (pr112 F).
Definition preserves_locally_cartesian_closed_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: preserves_locally_cartesian_closed
(functor_finlim_preserves_pullback F)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₁)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₂)
:= pr2 (pr212 F).
Definition functor_topos_with_NNO_universe
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: functor_finlim_universe
(cat_with_ob_univ_topos_with_NNO_universe E₁)
(cat_with_ob_univ_topos_with_NNO_universe E₂).
Show proof.
Definition make_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_pretopos E₁ E₂)
(HF : preserves_subobject_classifier
F
(terminal_univ_cat_with_finlim E₁)
(terminal_univ_cat_with_finlim E₂)
(functor_finlim_preserves_terminal F))
(HF' : preserves_locally_cartesian_closed
(functor_finlim_preserves_pullback F)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₁)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₂))
(HF'' : preserves_parameterized_NNO
(univ_topos_with_NNO_univ_NNO E₁)
(univ_topos_with_NNO_univ_NNO E₂)
F
(functor_finlim_preserves_terminal F))
(Fu : z_iso
(F (univ_cat_universe E₁))
(univ_cat_universe E₂))
(Fel : functor_preserves_el
(univ_cat_cat_stable_el_map E₁)
(univ_cat_cat_stable_el_map E₂)
(pr1 F ,, Fu))
: functor_topos_with_NNO_univ E₁ E₂.
Show proof.
Definition nat_trans_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F G : functor_topos_with_NNO_univ E₁ E₂)
: UU
:= F ==> G.
Coercion nat_trans_topos_with_NNO_univ_to_nat_trans_finlim
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ F G)
: nat_trans_finlim F G
:= pr1 τ.
Coercion nat_trans_topos_with_NNO_univ_to_nat_trans_finlim_universe
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ F G)
: nat_trans_finlim_universe
(functor_topos_with_NNO_universe F)
(functor_topos_with_NNO_universe G).
Show proof.
Definition make_nat_trans_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
(τ : F ⟹ G)
(p : τ (univ_cat_universe E₁)
· functor_on_universe (functor_topos_with_NNO_universe G)
=
functor_on_universe (functor_topos_with_NNO_universe F))
(q : nat_trans_preserves_el
(make_nat_trans_finlim τ ,, p
: nat_trans_finlim_ob
(functor_topos_with_NNO_universe F)
(functor_topos_with_NNO_universe G))
(functor_finlim_universe_preserves_el
(functor_topos_with_NNO_universe F))
(functor_finlim_universe_preserves_el
(functor_topos_with_NNO_universe G)))
: nat_trans_topos_with_NNO_univ F G
:= make_nat_trans_finlim τ ,, (((tt ,, tt) ,, (tt ,, tt)) ,, p ,, q).
Proposition nat_trans_topos_with_NNO_eq
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
{τ₁ τ₂ : nat_trans_topos_with_NNO_univ F G}
(p : ∏ (x : E₁), τ₁ x = τ₂ x)
: τ₁ = τ₂.
Show proof.
: UU
:= bicat_of_univ_topos_with_NNO_univ.
Coercion univ_topos_with_NNO_to_univ_pretopos
(E : univ_topos_with_NNO_univ)
: univ_pretopos.
Show proof.
use make_univ_pretopos.
- exact (pr1 E).
- exact (pr111 (pr111 (pr112 E))).
- exact (pr1 (pr211 (pr111 (pr112 E)))).
- exact (pr2 (pr211 (pr111 (pr112 E)))).
- exact (pr21 (pr111 (pr112 E))).
- exact (pr112 (pr111 (pr112 E))).
- exact (pr212 (pr111 (pr112 E))).
- exact (pr22 (pr111 (pr112 E))).
- exact (pr1 E).
- exact (pr111 (pr111 (pr112 E))).
- exact (pr1 (pr211 (pr111 (pr112 E)))).
- exact (pr2 (pr211 (pr111 (pr112 E)))).
- exact (pr21 (pr111 (pr112 E))).
- exact (pr112 (pr111 (pr112 E))).
- exact (pr212 (pr111 (pr112 E))).
- exact (pr22 (pr111 (pr112 E))).
Definition univ_topos_with_NNO_univ_subobject_classifier
(E : univ_topos_with_NNO_univ)
: subobject_classifier (terminal_univ_cat_with_finlim E)
:= pr211 (pr112 E).
Definition univ_topos_with_NNO_univ_NNO
(E : univ_topos_with_NNO_univ)
: parameterized_NNO
(terminal_univ_cat_with_finlim E)
(binproducts_univ_cat_with_finlim E)
:= pr21 (pr112 E).
Definition is_locally_cartesian_closed_univ_topos_with_NNO_univ
(E : univ_topos_with_NNO_univ)
: is_locally_cartesian_closed (pullbacks_univ_cat_with_finlim E)
:= pr1 (pr212 E).
Coercion cat_with_ob_univ_topos_with_NNO_universe
(E : univ_topos_with_NNO_univ)
: univ_cat_with_finlim_universe.
Show proof.
Definition make_univ_topos_with_NNO
(E : univ_pi_pretopos)
(Ω : subobject_classifier (terminal_univ_cat_with_finlim E))
(N : parameterized_NNO
(terminal_univ_cat_with_finlim E)
(binproducts_univ_cat_with_finlim E))
(u : E)
(el : cat_stable_el_map (pretopos_to_finlim E ,, u))
(H : is_coherent_cat_stable_el_map el)
: univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, (((((((_ ,, (_ ,, _)) ,, _)
,, ((_ ,, _) ,, _)) ,, _) ,, _) ,, tt) ,, (_ ,, tt))
,, (_ ,, _ ,, _)) ; cbn.
- exact (pretopos_to_finlim E).
- exact (strict_initial_univ_pretopos E).
- exact (bincoproducts_univ_pretopos E).
- exact (stable_bincoproducts_univ_pretopos E).
- exact (disjoint_bincoproducts_univ_pretopos E).
- exact (is_regular_category_coeqs_of_kernel_pair
(is_regular_category_univ_pretopos E)).
- exact (is_regular_category_regular_epi_pb_stable
(is_regular_category_univ_pretopos E)).
- exact (all_internal_eqrel_effective_univ_pretopos E).
- exact Ω.
- exact N.
- exact (univ_pi_pretopos_lccc E).
- exact u.
- exact el.
- exact H.
,, ((_ ,, _) ,, _)) ,, _) ,, _) ,, tt) ,, (_ ,, tt))
,, (_ ,, _ ,, _)) ; cbn.
- exact (pretopos_to_finlim E).
- exact (strict_initial_univ_pretopos E).
- exact (bincoproducts_univ_pretopos E).
- exact (stable_bincoproducts_univ_pretopos E).
- exact (disjoint_bincoproducts_univ_pretopos E).
- exact (is_regular_category_coeqs_of_kernel_pair
(is_regular_category_univ_pretopos E)).
- exact (is_regular_category_regular_epi_pb_stable
(is_regular_category_univ_pretopos E)).
- exact (all_internal_eqrel_effective_univ_pretopos E).
- exact Ω.
- exact N.
- exact (univ_pi_pretopos_lccc E).
- exact u.
- exact el.
- exact H.
Definition functor_topos_with_NNO_univ
(E₁ E₂ : univ_topos_with_NNO_univ)
: UU
:= E₁ --> E₂.
Coercion functor_topos_with_NNO_univ_to_functor_pretopos
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: functor_pretopos E₁ E₂.
Show proof.
use make_functor_pretopos.
- exact (pr1 F).
- exact (pr11 (pr112 (pr112 F))).
- exact (pr21 (pr112 (pr112 F))).
- exact (pr12 (pr112 (pr112 F))).
- exact (pr1 F).
- exact (pr11 (pr112 (pr112 F))).
- exact (pr21 (pr112 (pr112 F))).
- exact (pr12 (pr112 (pr112 F))).
Definition preserves_subobject_classifier_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: preserves_subobject_classifier
F
(terminal_univ_cat_with_finlim E₁)
(terminal_univ_cat_with_finlim E₂)
(functor_finlim_preserves_terminal F)
:= pr212 (pr112 F).
Definition preserves_NNO_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: preserves_parameterized_NNO
(univ_topos_with_NNO_univ_NNO E₁)
(univ_topos_with_NNO_univ_NNO E₂)
F
(functor_finlim_preserves_terminal F)
:= pr22 (pr112 F).
Definition preserves_locally_cartesian_closed_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: preserves_locally_cartesian_closed
(functor_finlim_preserves_pullback F)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₁)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₂)
:= pr2 (pr212 F).
Definition functor_topos_with_NNO_universe
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
: functor_finlim_universe
(cat_with_ob_univ_topos_with_NNO_universe E₁)
(cat_with_ob_univ_topos_with_NNO_universe E₂).
Show proof.
Definition make_functor_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F : functor_pretopos E₁ E₂)
(HF : preserves_subobject_classifier
F
(terminal_univ_cat_with_finlim E₁)
(terminal_univ_cat_with_finlim E₂)
(functor_finlim_preserves_terminal F))
(HF' : preserves_locally_cartesian_closed
(functor_finlim_preserves_pullback F)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₁)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₂))
(HF'' : preserves_parameterized_NNO
(univ_topos_with_NNO_univ_NNO E₁)
(univ_topos_with_NNO_univ_NNO E₂)
F
(functor_finlim_preserves_terminal F))
(Fu : z_iso
(F (univ_cat_universe E₁))
(univ_cat_universe E₂))
(Fel : functor_preserves_el
(univ_cat_cat_stable_el_map E₁)
(univ_cat_cat_stable_el_map E₂)
(pr1 F ,, Fu))
: functor_topos_with_NNO_univ E₁ E₂.
Show proof.
simple refine (_ ,, (((tt ,, ((((_ ,, _) ,, (_ ,, tt)) ,, _) ,, _))
,, (tt ,, _)) ,, (_ ,, _))).
- exact (functor_pretopos_to_functor_finlim F).
- exact (preserves_initial_functor_pretopos F).
- exact (preserves_bincoproduct_functor_pretopos F).
- exact (preserves_regular_epi_functor_pretopos F).
- exact HF.
- exact HF''.
- exact HF'.
- exact Fu.
- exact Fel.
,, (tt ,, _)) ,, (_ ,, _))).
- exact (functor_pretopos_to_functor_finlim F).
- exact (preserves_initial_functor_pretopos F).
- exact (preserves_bincoproduct_functor_pretopos F).
- exact (preserves_regular_epi_functor_pretopos F).
- exact HF.
- exact HF''.
- exact HF'.
- exact Fu.
- exact Fel.
Definition nat_trans_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
(F G : functor_topos_with_NNO_univ E₁ E₂)
: UU
:= F ==> G.
Coercion nat_trans_topos_with_NNO_univ_to_nat_trans_finlim
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ F G)
: nat_trans_finlim F G
:= pr1 τ.
Coercion nat_trans_topos_with_NNO_univ_to_nat_trans_finlim_universe
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ F G)
: nat_trans_finlim_universe
(functor_topos_with_NNO_universe F)
(functor_topos_with_NNO_universe G).
Show proof.
Definition make_nat_trans_topos_with_NNO_univ
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
(τ : F ⟹ G)
(p : τ (univ_cat_universe E₁)
· functor_on_universe (functor_topos_with_NNO_universe G)
=
functor_on_universe (functor_topos_with_NNO_universe F))
(q : nat_trans_preserves_el
(make_nat_trans_finlim τ ,, p
: nat_trans_finlim_ob
(functor_topos_with_NNO_universe F)
(functor_topos_with_NNO_universe G))
(functor_finlim_universe_preserves_el
(functor_topos_with_NNO_universe F))
(functor_finlim_universe_preserves_el
(functor_topos_with_NNO_universe G)))
: nat_trans_topos_with_NNO_univ F G
:= make_nat_trans_finlim τ ,, (((tt ,, tt) ,, (tt ,, tt)) ,, p ,, q).
Proposition nat_trans_topos_with_NNO_eq
{E₁ E₂ : univ_topos_with_NNO_univ}
{F G : functor_topos_with_NNO_univ E₁ E₂}
{τ₁ τ₂ : nat_trans_topos_with_NNO_univ F G}
(p : ∏ (x : E₁), τ₁ x = τ₂ x)
: τ₁ = τ₂.
Show proof.
use subtypePath.
{
intro.
use isaproptotal2.
- intro.
use isaproptotal2.
+ intro.
apply isaprop_nat_trans_preserves_el.
+ intros.
apply homset_property.
- intros.
use pathsdirprod ; use pathsdirprod ; apply isapropunit.
}
use nat_trans_finlim_eq.
exact p.
{
intro.
use isaproptotal2.
- intro.
use isaproptotal2.
+ intro.
apply isaprop_nat_trans_preserves_el.
+ intros.
apply homset_property.
- intros.
use pathsdirprod ; use pathsdirprod ; apply isapropunit.
}
use nat_trans_finlim_eq.
exact p.
Definition disp_bicat_univ_topos_with_NNO_univ_language
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
disp_bicat_univ_topos_with_NNO_language
disp_bicat_dfl_full_comp_cat_with_univ.
Proposition disp_2cells_isaprop_disp_bicat_univ_topos_with_NNO_univ_language
: disp_2cells_isaprop disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Proposition disp_locally_groupoid_disp_bicat_univ_topos_with_NNO_univ_language
: disp_locally_groupoid disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Proposition disp_univalent_2_disp_bicat_univ_topos_with_NNO_univ_language
: disp_univalent_2 disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_univ_topos_with_NNO_univ_language
: disp_univalent_2_0 disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_univ_topos_with_NNO_univ_language
: disp_univalent_2_1 disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Definition univ_topos_with_NNO_univ_language
: bicat
:= total_bicat disp_bicat_univ_topos_with_NNO_univ_language.
Proposition is_univalent_2_univ_topos_with_NNO_univ_language
: is_univalent_2 univ_topos_with_NNO_univ_language.
Show proof.
Proposition is_univalent_2_0_univ_topos_with_NNO_univ_language
: is_univalent_2_0 univ_topos_with_NNO_univ_language.
Show proof.
Proposition is_univalent_2_1_univ_topos_with_NNO_univ_language
: is_univalent_2_1 univ_topos_with_NNO_univ_language.
Show proof.
: disp_bicat bicat_of_dfl_full_comp_cat
:= disp_dirprod_bicat
disp_bicat_univ_topos_with_NNO_language
disp_bicat_dfl_full_comp_cat_with_univ.
Proposition disp_2cells_isaprop_disp_bicat_univ_topos_with_NNO_univ_language
: disp_2cells_isaprop disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
use disp_2cells_isaprop_prod.
- exact disp_2cells_isaprop_disp_bicat_univ_topos_with_NNO_language.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_2cells_isaprop_disp_bicat_univ_topos_with_NNO_language.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
Proposition disp_locally_groupoid_disp_bicat_univ_topos_with_NNO_univ_language
: disp_locally_groupoid disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
use disp_locally_groupoid_prod.
- exact disp_locally_groupoid_disp_bicat_univ_topos_with_NNO_language.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_univ_topos_with_NNO_language.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
Proposition disp_univalent_2_disp_bicat_univ_topos_with_NNO_univ_language
: disp_univalent_2 disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
use is_univalent_2_dirprod_bicat.
- exact is_univalent_2_1_bicat_of_dfl_full_comp_cat.
- exact disp_univalent_2_disp_bicat_univ_topos_with_NNO_language.
- exact disp_univalent_2_disp_bicat_dfl_full_comp_cat_with_univ.
- exact is_univalent_2_1_bicat_of_dfl_full_comp_cat.
- exact disp_univalent_2_disp_bicat_univ_topos_with_NNO_language.
- exact disp_univalent_2_disp_bicat_dfl_full_comp_cat_with_univ.
Proposition disp_univalent_2_0_disp_bicat_univ_topos_with_NNO_univ_language
: disp_univalent_2_0 disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_univ_topos_with_NNO_univ_language
: disp_univalent_2_1 disp_bicat_univ_topos_with_NNO_univ_language.
Show proof.
Definition univ_topos_with_NNO_univ_language
: bicat
:= total_bicat disp_bicat_univ_topos_with_NNO_univ_language.
Proposition is_univalent_2_univ_topos_with_NNO_univ_language
: is_univalent_2 univ_topos_with_NNO_univ_language.
Show proof.
use total_is_univalent_2.
- exact disp_univalent_2_disp_bicat_univ_topos_with_NNO_univ_language.
- exact is_univalent_2_bicat_of_dfl_full_comp_cat.
- exact disp_univalent_2_disp_bicat_univ_topos_with_NNO_univ_language.
- exact is_univalent_2_bicat_of_dfl_full_comp_cat.
Proposition is_univalent_2_0_univ_topos_with_NNO_univ_language
: is_univalent_2_0 univ_topos_with_NNO_univ_language.
Show proof.
Proposition is_univalent_2_1_univ_topos_with_NNO_univ_language
: is_univalent_2_1 univ_topos_with_NNO_univ_language.
Show proof.
Definition topos_NNO_univ_comp_cat
: UU
:= univ_topos_with_NNO_univ_language.
Coercion topos_NNO_comp_cat_univ_to_dfl_comp_cat
(C : topos_NNO_univ_comp_cat)
: dfl_full_comp_cat
:= pr1 C.
Definition fiberwise_strict_initial_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
strict_initial_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_left
(local_property_sub_left
(local_property_conj_left
(local_property_conj_left
(local_property_conj_left
(pr1 (pr112 C)))))).
Definition fiberwise_bincoproduct_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
stable_bincoproducts_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right
(local_property_sub_left
(local_property_conj_left
(local_property_conj_left
(local_property_conj_left
(pr1 (pr112 C)))))).
Definition fiberwise_regular_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
regular_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_left
(local_property_conj_right
(local_property_conj_left
(local_property_conj_left (pr1 (pr112 C))))).
Definition fiberwise_effective_eqrel_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
all_eqrel_effective_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right
(local_property_conj_right
(local_property_conj_left
(local_property_conj_left (pr1 (pr112 C))))).
Definition fiberwise_subobject_classifier_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
subobject_classifier_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right
(local_property_conj_left (pr1 (pr112 C))).
Definition fiberwise_nno_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
parameterized_NNO_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right (pr1 (pr112 C)).
Definition comp_cat_dependent_prod_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: comp_cat_dependent_prod C
:= pr1 (pr212 C).
Definition topos_NNO_comp_cat_universe
(C : topos_NNO_univ_comp_cat)
: dfl_full_comp_cat_with_univ.
Show proof.
Definition topos_NNO_univ_comp_cat_functor
(C₁ C₂ : topos_NNO_univ_comp_cat)
: UU
:= C₁ --> C₂.
Coercion topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: dfl_full_comp_cat_functor
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C₁)
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C₂)
:= pr1 F.
Definition fiberwise_strict_initial_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_strict_initial_topos_NNO_comp_cat C₁)
(fiberwise_strict_initial_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_left
(local_property_functor_sub_left
(local_property_functor_conj_left
(local_property_functor_conj_left
(local_property_functor_conj_left (pr2 (pr112 F)))))).
Definition fiberwise_bincoproduct_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_bincoproduct_topos_NNO_comp_cat C₁)
(fiberwise_bincoproduct_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_right
(local_property_functor_sub_left
(local_property_functor_conj_left
(local_property_functor_conj_left
(local_property_functor_conj_left (pr2 (pr112 F)))))).
Definition fiberwise_regular_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_regular_topos_NNO_comp_cat C₁)
(fiberwise_regular_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_left
(local_property_functor_conj_right
(local_property_functor_conj_left
(local_property_functor_conj_left (pr2 (pr112 F))))).
Definition fiberwise_subobject_classifier_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_subobject_classifier_topos_NNO_comp_cat C₁)
(fiberwise_subobject_classifier_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_right
(local_property_functor_conj_left (pr2 (pr112 F))).
Definition fiberwise_nno_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_nno_topos_NNO_comp_cat C₁)
(fiberwise_nno_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_right (pr2 (pr112 F)).
Definition preserves_comp_cat_dependent_prod_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: preserves_comp_cat_dependent_prod
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(comp_cat_dependent_prod_topos_NNO_comp_cat C₁)
(comp_cat_dependent_prod_topos_NNO_comp_cat C₂)
:= pr2 (pr212 F).
Definition topos_NNO_univ_comp_cat_with_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: dfl_full_comp_cat_with_univ_functor
(topos_NNO_comp_cat_universe C₁)
(topos_NNO_comp_cat_universe C₂).
Show proof.
Definition topos_NNO_univ_comp_cat_nat_trans
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F G : topos_NNO_univ_comp_cat_functor C₁ C₂)
: UU
:= F ==> G.
Coercion topos_NNO_univ_comp_cat_nat_trans_to_dfl_full_comp_cat_nat_trans
{C₁ C₂ : topos_NNO_univ_comp_cat}
{F G : topos_NNO_univ_comp_cat_functor C₁ C₂}
(τ : topos_NNO_univ_comp_cat_nat_trans F G)
: dfl_full_comp_cat_nat_trans
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor G)
:= pr1 τ.
Definition topos_NNO_univ_dfl_comp_cat_nat_trans_univ
{C₁ C₂ : topos_NNO_univ_comp_cat}
{F G : topos_NNO_univ_comp_cat_functor C₁ C₂}
(τ : topos_NNO_univ_comp_cat_nat_trans F G)
: dfl_full_comp_cat_with_univ_nat_trans
(topos_NNO_univ_comp_cat_with_functor F)
(topos_NNO_univ_comp_cat_with_functor G).
Show proof.
: UU
:= univ_topos_with_NNO_univ_language.
Coercion topos_NNO_comp_cat_univ_to_dfl_comp_cat
(C : topos_NNO_univ_comp_cat)
: dfl_full_comp_cat
:= pr1 C.
Definition fiberwise_strict_initial_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
strict_initial_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_left
(local_property_sub_left
(local_property_conj_left
(local_property_conj_left
(local_property_conj_left
(pr1 (pr112 C)))))).
Definition fiberwise_bincoproduct_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
stable_bincoproducts_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right
(local_property_sub_left
(local_property_conj_left
(local_property_conj_left
(local_property_conj_left
(pr1 (pr112 C)))))).
Definition fiberwise_regular_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
regular_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_left
(local_property_conj_right
(local_property_conj_left
(local_property_conj_left (pr1 (pr112 C))))).
Definition fiberwise_effective_eqrel_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
all_eqrel_effective_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right
(local_property_conj_right
(local_property_conj_left
(local_property_conj_left (pr1 (pr112 C))))).
Definition fiberwise_subobject_classifier_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
subobject_classifier_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right
(local_property_conj_left (pr1 (pr112 C))).
Definition fiberwise_nno_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: fiberwise_cat_property
parameterized_NNO_local_property
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C)
:= local_property_conj_right (pr1 (pr112 C)).
Definition comp_cat_dependent_prod_topos_NNO_comp_cat
(C : topos_NNO_univ_comp_cat)
: comp_cat_dependent_prod C
:= pr1 (pr212 C).
Definition topos_NNO_comp_cat_universe
(C : topos_NNO_univ_comp_cat)
: dfl_full_comp_cat_with_univ.
Show proof.
use make_dfl_full_comp_cat_with_univ.
- exact (topos_NNO_comp_cat_univ_to_dfl_comp_cat C).
- exact (pr122 C).
- exact (pr222 C).
- exact (topos_NNO_comp_cat_univ_to_dfl_comp_cat C).
- exact (pr122 C).
- exact (pr222 C).
Definition topos_NNO_univ_comp_cat_functor
(C₁ C₂ : topos_NNO_univ_comp_cat)
: UU
:= C₁ --> C₂.
Coercion topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: dfl_full_comp_cat_functor
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C₁)
(topos_NNO_comp_cat_univ_to_dfl_comp_cat C₂)
:= pr1 F.
Definition fiberwise_strict_initial_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_strict_initial_topos_NNO_comp_cat C₁)
(fiberwise_strict_initial_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_left
(local_property_functor_sub_left
(local_property_functor_conj_left
(local_property_functor_conj_left
(local_property_functor_conj_left (pr2 (pr112 F)))))).
Definition fiberwise_bincoproduct_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_bincoproduct_topos_NNO_comp_cat C₁)
(fiberwise_bincoproduct_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_right
(local_property_functor_sub_left
(local_property_functor_conj_left
(local_property_functor_conj_left
(local_property_functor_conj_left (pr2 (pr112 F)))))).
Definition fiberwise_regular_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_regular_topos_NNO_comp_cat C₁)
(fiberwise_regular_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_left
(local_property_functor_conj_right
(local_property_functor_conj_left
(local_property_functor_conj_left (pr2 (pr112 F))))).
Definition fiberwise_subobject_classifier_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_subobject_classifier_topos_NNO_comp_cat C₁)
(fiberwise_subobject_classifier_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_right
(local_property_functor_conj_left (pr2 (pr112 F))).
Definition fiberwise_nno_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: fiberwise_cat_property_functor
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(fiberwise_nno_topos_NNO_comp_cat C₁)
(fiberwise_nno_topos_NNO_comp_cat C₂)
:= local_property_functor_conj_right (pr2 (pr112 F)).
Definition preserves_comp_cat_dependent_prod_topos_NNO_comp_cat_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: preserves_comp_cat_dependent_prod
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(comp_cat_dependent_prod_topos_NNO_comp_cat C₁)
(comp_cat_dependent_prod_topos_NNO_comp_cat C₂)
:= pr2 (pr212 F).
Definition topos_NNO_univ_comp_cat_with_functor
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F : topos_NNO_univ_comp_cat_functor C₁ C₂)
: dfl_full_comp_cat_with_univ_functor
(topos_NNO_comp_cat_universe C₁)
(topos_NNO_comp_cat_universe C₂).
Show proof.
Definition topos_NNO_univ_comp_cat_nat_trans
{C₁ C₂ : topos_NNO_univ_comp_cat}
(F G : topos_NNO_univ_comp_cat_functor C₁ C₂)
: UU
:= F ==> G.
Coercion topos_NNO_univ_comp_cat_nat_trans_to_dfl_full_comp_cat_nat_trans
{C₁ C₂ : topos_NNO_univ_comp_cat}
{F G : topos_NNO_univ_comp_cat_functor C₁ C₂}
(τ : topos_NNO_univ_comp_cat_nat_trans F G)
: dfl_full_comp_cat_nat_trans
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor F)
(topos_NNO_univ_comp_cat_functor_to_dfl_comp_cat_functor G)
:= pr1 τ.
Definition topos_NNO_univ_dfl_comp_cat_nat_trans_univ
{C₁ C₂ : topos_NNO_univ_comp_cat}
{F G : topos_NNO_univ_comp_cat_functor C₁ C₂}
(τ : topos_NNO_univ_comp_cat_nat_trans F G)
: dfl_full_comp_cat_with_univ_nat_trans
(topos_NNO_univ_comp_cat_with_functor F)
(topos_NNO_univ_comp_cat_with_functor G).
Show proof.
use make_dfl_full_comp_cat_with_univ_nat_trans.
- simple refine (_ ,, _).
+ exact (pr111 τ).
+ exact (pr122 τ).
- exact (pr222 τ).
- simple refine (_ ,, _).
+ exact (pr111 τ).
+ exact (pr122 τ).
- exact (pr222 τ).
Definition disp_psfunctor_lang_univ_topos_with_NNO_univ
: disp_psfunctor
disp_bicat_of_univ_topos_with_NNO_univ
disp_bicat_univ_topos_with_NNO_univ_language
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
Definition lang_univ_topos_with_NNO_univ
: psfunctor
bicat_of_univ_topos_with_NNO_univ
univ_topos_with_NNO_univ_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ
: is_biequivalence lang_univ_topos_with_NNO_univ.
Show proof.
Definition mod_univ_topos_with_NNO_univ
: psfunctor
univ_topos_with_NNO_univ_language
bicat_of_univ_topos_with_NNO_univ
:= inv_psfunctor_of_is_biequivalence
internal_language_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ_unit
: pstrans
(comp_psfunctor
mod_univ_topos_with_NNO_univ
lang_univ_topos_with_NNO_univ)
(id_psfunctor _)
:= unit_of_is_biequivalence internal_language_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ_counit
: pstrans
(id_psfunctor _)
(comp_psfunctor
lang_univ_topos_with_NNO_univ
mod_univ_topos_with_NNO_univ)
:= invcounit_of_is_biequivalence internal_language_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ_counit_pt
(C : topos_NNO_univ_comp_cat)
: C --> lang_univ_topos_with_NNO_univ (mod_univ_topos_with_NNO_univ C)
:= internal_language_univ_topos_with_NNO_univ_counit C.
: disp_psfunctor
disp_bicat_of_univ_topos_with_NNO_univ
disp_bicat_univ_topos_with_NNO_univ_language
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
refine (prod_disp_psfunctor
_ _ _ _
disp_psfunctor_lang_univ_topos_with_NNO
finlim_to_dfl_comp_cat_disp_psfunctor_universe).
- use disp_2cells_isaprop_prod.
+ apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
+ exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- use disp_locally_groupoid_prod.
+ apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
+ exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
_ _ _ _
disp_psfunctor_lang_univ_topos_with_NNO
finlim_to_dfl_comp_cat_disp_psfunctor_universe).
- use disp_2cells_isaprop_prod.
+ apply disp_2cells_isaprop_disp_bicat_of_cat_property_dfl_full_comp_cat.
+ exact disp_2cells_isaprop_disp_bicat_of_pi_type_dfl_full_comp_cat.
- use disp_locally_groupoid_prod.
+ apply disp_locally_groupoid_disp_bicat_of_cat_property_dfl_full_comp_cat.
+ exact disp_locally_groupoid_disp_bicat_of_pi_type_dfl_full_comp_cat.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
Definition lang_univ_topos_with_NNO_univ
: psfunctor
bicat_of_univ_topos_with_NNO_univ
univ_topos_with_NNO_univ_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ
: is_biequivalence lang_univ_topos_with_NNO_univ.
Show proof.
refine (total_is_biequivalence
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
topos_with_NNO_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)
finlim_biequiv_dfl_comp_cat_psfunctor_universe)).
- use disp_2cells_isaprop_prod.
+ apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
+ exact disp_2cells_isaprop_univ_lccc.
- use disp_locally_groupoid_prod.
+ apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
+ exact disp_locally_groupoid_univ_lccc.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
_ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(prod_disp_is_biequivalence_data
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
(finlim_biequiv_dfl_comp_cat_psfunctor_local_property
topos_with_NNO_local_property)
finlim_biequiv_dfl_comp_cat_psfunctor_pi_types)
finlim_biequiv_dfl_comp_cat_psfunctor_universe)).
- use disp_2cells_isaprop_prod.
+ apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
+ exact disp_2cells_isaprop_univ_lccc.
- use disp_locally_groupoid_prod.
+ apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
+ exact disp_locally_groupoid_univ_lccc.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- apply disp_2cells_isaprop_disp_bicat_of_univ_cat_with_cat_property.
- apply disp_locally_groupoid_disp_bicat_of_univ_cat_with_cat_property.
- exact disp_2cells_isaprop_univ_lccc.
- exact disp_locally_groupoid_univ_lccc.
Definition mod_univ_topos_with_NNO_univ
: psfunctor
univ_topos_with_NNO_univ_language
bicat_of_univ_topos_with_NNO_univ
:= inv_psfunctor_of_is_biequivalence
internal_language_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ_unit
: pstrans
(comp_psfunctor
mod_univ_topos_with_NNO_univ
lang_univ_topos_with_NNO_univ)
(id_psfunctor _)
:= unit_of_is_biequivalence internal_language_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ_counit
: pstrans
(id_psfunctor _)
(comp_psfunctor
lang_univ_topos_with_NNO_univ
mod_univ_topos_with_NNO_univ)
:= invcounit_of_is_biequivalence internal_language_univ_topos_with_NNO_univ.
Definition internal_language_univ_topos_with_NNO_univ_counit_pt
(C : topos_NNO_univ_comp_cat)
: C --> lang_univ_topos_with_NNO_univ (mod_univ_topos_with_NNO_univ C)
:= internal_language_univ_topos_with_NNO_univ_counit C.
Definition disp_cat_ob_mor_topos_with_NNO_univ_nno_type
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_cat_id_comp_topos_with_NNO_univ_nno_type
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_nno_type.
Show proof.
Definition disp_cat_data_topos_with_NNO_univ_nno_type
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition disp_bicat_topos_with_NNO_univ_nno_type
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_nno_type
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_nno_type.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_nno_type
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_nno_type.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_nno_type
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_nno_type.
Show proof.
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact (λ (E : univ_topos_with_NNO_univ),
pnno_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_NNO E)).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : pnno_in_cat_univ
(C := E₁)
(univ_topos_with_NNO_univ_NNO E₁))
(c₂ : pnno_in_cat_univ
(C := E₂)
(univ_topos_with_NNO_univ_NNO E₂))
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_pnno_in_cat_univ
c₁ c₂
(functor_topos_with_NNO_universe F)
(preserves_NNO_functor_topos_with_NNO_univ F)).
- exact (λ (E : univ_topos_with_NNO_univ),
pnno_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_NNO E)).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : pnno_in_cat_univ
(C := E₁)
(univ_topos_with_NNO_univ_NNO E₁))
(c₂ : pnno_in_cat_univ
(C := E₂)
(univ_topos_with_NNO_univ_NNO E₂))
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_pnno_in_cat_univ
c₁ c₂
(functor_topos_with_NNO_universe F)
(preserves_NNO_functor_topos_with_NNO_univ F)).
Proposition disp_cat_id_comp_topos_with_NNO_univ_nno_type
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_nno_type.
Show proof.
split.
- intros E c.
refine (transportf
(functor_preserves_pnno_in_cat_univ _ _ _)
_
(id_functor_preserves_pnno_in_cat_univ c)).
apply isaprop_preserves_parameterized_NNO.
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
refine (transportf
(functor_preserves_pnno_in_cat_univ _ _ _)
_
(comp_functor_preserves_pnno_in_cat_univ Fc Gc)).
apply isaprop_preserves_parameterized_NNO.
- intros E c.
refine (transportf
(functor_preserves_pnno_in_cat_univ _ _ _)
_
(id_functor_preserves_pnno_in_cat_univ c)).
apply isaprop_preserves_parameterized_NNO.
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
refine (transportf
(functor_preserves_pnno_in_cat_univ _ _ _)
_
(comp_functor_preserves_pnno_in_cat_univ Fc Gc)).
apply isaprop_preserves_parameterized_NNO.
Definition disp_cat_data_topos_with_NNO_univ_nno_type
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact disp_cat_ob_mor_topos_with_NNO_univ_nno_type.
- exact disp_cat_id_comp_topos_with_NNO_univ_nno_type.
- exact disp_cat_ob_mor_topos_with_NNO_univ_nno_type.
- exact disp_cat_id_comp_topos_with_NNO_univ_nno_type.
Definition disp_bicat_topos_with_NNO_univ_nno_type
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_nno_type
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_nno_type.
Show proof.
use disp_cell_unit_bicat_univalent_2.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_type_in_cat_univ.
- intros.
apply isaset_type_in_cat_univ.
- intros E c₁ c₂ F.
apply pnno_in_cat_univ_univalence_lemma.
refine (transportf
(functor_preserves_pnno_in_cat_univ _ _ _)
_
(pr1 F)).
apply isaprop_preserves_parameterized_NNO.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_type_in_cat_univ.
- intros.
apply isaset_type_in_cat_univ.
- intros E c₁ c₂ F.
apply pnno_in_cat_univ_univalence_lemma.
refine (transportf
(functor_preserves_pnno_in_cat_univ _ _ _)
_
(pr1 F)).
apply isaprop_preserves_parameterized_NNO.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_nno_type
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_nno_type.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_nno_type
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_nno_type.
Show proof.
Definition disp_cat_ob_mor_topos_with_NNO_univ_subobj_classifier
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_cat_id_comp_topos_with_NNO_univ_subobj_classifier
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_subobj_classifier.
Show proof.
Definition disp_cat_data_topos_with_NNO_univ_subobj_classifier
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_subobj_classifier.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_subobj_classifier.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_subobj_classifier.
Show proof.
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact (λ (E : univ_topos_with_NNO_univ),
subobject_classifier_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_subobject_classifier E)).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : subobject_classifier_in_cat_univ
(C := E₁)
(univ_topos_with_NNO_univ_subobject_classifier E₁))
(c₂ : subobject_classifier_in_cat_univ
(C := E₂)
(univ_topos_with_NNO_univ_subobject_classifier E₂))
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_subobject_classifier_in_cat_univ
c₁ c₂
(functor_topos_with_NNO_universe F)
(preserves_subobject_classifier_functor_topos_with_NNO_univ F)).
- exact (λ (E : univ_topos_with_NNO_univ),
subobject_classifier_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_subobject_classifier E)).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : subobject_classifier_in_cat_univ
(C := E₁)
(univ_topos_with_NNO_univ_subobject_classifier E₁))
(c₂ : subobject_classifier_in_cat_univ
(C := E₂)
(univ_topos_with_NNO_univ_subobject_classifier E₂))
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_subobject_classifier_in_cat_univ
c₁ c₂
(functor_topos_with_NNO_universe F)
(preserves_subobject_classifier_functor_topos_with_NNO_univ F)).
Proposition disp_cat_id_comp_topos_with_NNO_univ_subobj_classifier
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_subobj_classifier.
Show proof.
split.
- intros E c.
refine (transportf
(functor_preserves_subobject_classifier_in_cat_univ _ _ _)
_
(id_functor_preserves_subobject_classifier_in_cat_univ c)).
apply isaprop_preserves_subobject_classifier.
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
refine (transportf
(functor_preserves_subobject_classifier_in_cat_univ _ _ _)
_
(comp_functor_preserves_subobject_classifier_in_cat_univ Fc Gc)).
apply isaprop_preserves_subobject_classifier.
- intros E c.
refine (transportf
(functor_preserves_subobject_classifier_in_cat_univ _ _ _)
_
(id_functor_preserves_subobject_classifier_in_cat_univ c)).
apply isaprop_preserves_subobject_classifier.
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
refine (transportf
(functor_preserves_subobject_classifier_in_cat_univ _ _ _)
_
(comp_functor_preserves_subobject_classifier_in_cat_univ Fc Gc)).
apply isaprop_preserves_subobject_classifier.
Definition disp_cat_data_topos_with_NNO_univ_subobj_classifier
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact disp_cat_ob_mor_topos_with_NNO_univ_subobj_classifier.
- exact disp_cat_id_comp_topos_with_NNO_univ_subobj_classifier.
- exact disp_cat_ob_mor_topos_with_NNO_univ_subobj_classifier.
- exact disp_cat_id_comp_topos_with_NNO_univ_subobj_classifier.
Definition disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_subobj_classifier.
Show proof.
use disp_cell_unit_bicat_univalent_2.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_type_in_cat_univ.
- intros.
apply isaset_type_in_cat_univ.
- intros E c₁ c₂ F.
apply subobject_classifier_in_cat_univ_univalence_lemma.
refine (transportf
(functor_preserves_subobject_classifier_in_cat_univ _ _ _)
_
(pr1 F)).
apply isaprop_preserves_subobject_classifier.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_type_in_cat_univ.
- intros.
apply isaset_type_in_cat_univ.
- intros E c₁ c₂ F.
apply subobject_classifier_in_cat_univ_univalence_lemma.
refine (transportf
(functor_preserves_subobject_classifier_in_cat_univ _ _ _)
_
(pr1 F)).
apply isaprop_preserves_subobject_classifier.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_subobj_classifier.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_subobj_classifier
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_subobj_classifier.
Show proof.
Definition disp_cat_ob_mor_topos_with_NNO_univ_resizing
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_cat_id_comp_topos_with_NNO_univ_resizing
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_resizing.
Show proof.
Definition disp_cat_data_topos_with_NNO_univ_resizing
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition disp_bicat_topos_with_NNO_univ_resizing
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_resizing
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_resizing.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_resizing
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_resizing.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_resizing
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_resizing.
Show proof.
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact (λ (E : univ_topos_with_NNO_univ),
cat_univ_stable_codes_resizing E).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : cat_univ_stable_codes_resizing E₁)
(c₂ : cat_univ_stable_codes_resizing E₂)
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_stable_resizing_codes
c₁ c₂
(functor_topos_with_NNO_universe F)).
- exact (λ (E : univ_topos_with_NNO_univ),
cat_univ_stable_codes_resizing E).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : cat_univ_stable_codes_resizing E₁)
(c₂ : cat_univ_stable_codes_resizing E₂)
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_stable_resizing_codes
c₁ c₂
(functor_topos_with_NNO_universe F)).
Proposition disp_cat_id_comp_topos_with_NNO_univ_resizing
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_resizing.
Show proof.
split.
- intros E c.
exact (identity_preserves_resizing_codes c).
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
exact (comp_preserves_resizing_codes Fc Gc).
- intros E c.
exact (identity_preserves_resizing_codes c).
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
exact (comp_preserves_resizing_codes Fc Gc).
Definition disp_cat_data_topos_with_NNO_univ_resizing
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact disp_cat_ob_mor_topos_with_NNO_univ_resizing.
- exact disp_cat_id_comp_topos_with_NNO_univ_resizing.
- exact disp_cat_ob_mor_topos_with_NNO_univ_resizing.
- exact disp_cat_id_comp_topos_with_NNO_univ_resizing.
Definition disp_bicat_topos_with_NNO_univ_resizing
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_resizing
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_resizing.
Show proof.
use disp_cell_unit_bicat_univalent_2.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_stable_resizing_codes.
- intros.
apply isaset_cat_univ_stable_codes_resizing.
- intros E c₁ c₂ F.
apply cat_univ_stable_codes_resizing_univalence_lemma.
exact (pr1 F).
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_stable_resizing_codes.
- intros.
apply isaset_cat_univ_stable_codes_resizing.
- intros E c₁ c₂ F.
apply cat_univ_stable_codes_resizing_univalence_lemma.
exact (pr1 F).
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_resizing
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_resizing.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_resizing
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_resizing.
Show proof.
Definition disp_cat_ob_mor_topos_with_NNO_univ_sigma
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_cat_id_comp_topos_with_NNO_univ_sigma
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_sigma.
Show proof.
Definition disp_cat_data_topos_with_NNO_univ_sigma
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition disp_bicat_topos_with_NNO_univ_sigma
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_sigma
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_sigma.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_sigma
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_sigma.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_sigma
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_sigma.
Show proof.
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact (λ (E : univ_topos_with_NNO_univ),
cat_univ_stable_codes_sigma E).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : cat_univ_stable_codes_sigma E₁)
(c₂ : cat_univ_stable_codes_sigma E₂)
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_stable_codes_sigma
c₁ c₂
(functor_topos_with_NNO_universe F)).
- exact (λ (E : univ_topos_with_NNO_univ),
cat_univ_stable_codes_sigma E).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : cat_univ_stable_codes_sigma E₁)
(c₂ : cat_univ_stable_codes_sigma E₂)
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_stable_codes_sigma
c₁ c₂
(functor_topos_with_NNO_universe F)).
Proposition disp_cat_id_comp_topos_with_NNO_univ_sigma
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_sigma.
Show proof.
split.
- intros E c.
exact (identity_preserves_stable_codes_sigma c).
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
exact (comp_preserves_stable_codes_sigma Fc Gc).
- intros E c.
exact (identity_preserves_stable_codes_sigma c).
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
exact (comp_preserves_stable_codes_sigma Fc Gc).
Definition disp_cat_data_topos_with_NNO_univ_sigma
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact disp_cat_ob_mor_topos_with_NNO_univ_sigma.
- exact disp_cat_id_comp_topos_with_NNO_univ_sigma.
- exact disp_cat_ob_mor_topos_with_NNO_univ_sigma.
- exact disp_cat_id_comp_topos_with_NNO_univ_sigma.
Definition disp_bicat_topos_with_NNO_univ_sigma
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_sigma
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_sigma.
Show proof.
use disp_cell_unit_bicat_univalent_2.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_stable_codes_sigma.
- intros.
apply isaset_cat_univ_stable_codes_sigma.
- intros E c₁ c₂ F.
apply sigma_univ_univalence_lemma.
exact (pr1 F).
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_stable_codes_sigma.
- intros.
apply isaset_cat_univ_stable_codes_sigma.
- intros E c₁ c₂ F.
apply sigma_univ_univalence_lemma.
exact (pr1 F).
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_sigma
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_sigma.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_sigma
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_sigma.
Show proof.
Definition disp_cat_ob_mor_topos_with_NNO_univ_pi
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_cat_id_comp_topos_with_NNO_univ_pi
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_pi.
Show proof.
Definition disp_cat_data_topos_with_NNO_univ_pi
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
Definition disp_bicat_topos_with_NNO_univ_pi
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_pi
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_pi.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_pi
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_pi.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_pi
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_pi.
Show proof.
: disp_cat_ob_mor bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact (λ (E : univ_topos_with_NNO_univ),
cat_univ_stable_codes_pi
(C := E)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E)).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : cat_univ_stable_codes_pi
(C := E₁)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₁))
(c₂ : cat_univ_stable_codes_pi
(C := E₂)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₂))
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_stable_codes_pi
c₁ c₂
(functor_topos_with_NNO_universe F)
(preserves_locally_cartesian_closed_functor_topos_with_NNO_univ F)).
- exact (λ (E : univ_topos_with_NNO_univ),
cat_univ_stable_codes_pi
(C := E)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E)).
- exact (λ (E₁ E₂ : univ_topos_with_NNO_univ)
(c₁ : cat_univ_stable_codes_pi
(C := E₁)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₁))
(c₂ : cat_univ_stable_codes_pi
(C := E₂)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E₂))
(F : functor_topos_with_NNO_univ E₁ E₂),
functor_preserves_stable_codes_pi
c₁ c₂
(functor_topos_with_NNO_universe F)
(preserves_locally_cartesian_closed_functor_topos_with_NNO_univ F)).
Proposition disp_cat_id_comp_topos_with_NNO_univ_pi
: disp_cat_id_comp
bicat_of_univ_topos_with_NNO_univ
disp_cat_ob_mor_topos_with_NNO_univ_pi.
Show proof.
split.
- intros E c.
exact (identity_preserves_stable_codes_pi c).
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
exact (comp_preserves_stable_codes_pi Fc Gc).
- intros E c.
exact (identity_preserves_stable_codes_pi c).
- intros E₁ E₂ E₃ F G c₁ c₂ c₃ Fc Gc.
exact (comp_preserves_stable_codes_pi Fc Gc).
Definition disp_cat_data_topos_with_NNO_univ_pi
: disp_cat_data bicat_of_univ_topos_with_NNO_univ.
Show proof.
simple refine (_ ,, _).
- exact disp_cat_ob_mor_topos_with_NNO_univ_pi.
- exact disp_cat_id_comp_topos_with_NNO_univ_pi.
- exact disp_cat_ob_mor_topos_with_NNO_univ_pi.
- exact disp_cat_id_comp_topos_with_NNO_univ_pi.
Definition disp_bicat_topos_with_NNO_univ_pi
: disp_bicat bicat_of_univ_topos_with_NNO_univ.
Show proof.
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_pi
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_pi.
Show proof.
use disp_cell_unit_bicat_univalent_2.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_stable_codes_pi.
- intros.
apply isaset_cat_univ_stable_codes_pi.
- intros E c₁ c₂ F.
apply pi_univ_univalence_lemma.
exact (pr1 F).
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- intros.
apply isaprop_functor_preserves_stable_codes_pi.
- intros.
apply isaset_cat_univ_stable_codes_pi.
- intros E c₁ c₂ F.
apply pi_univ_univalence_lemma.
exact (pr1 F).
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_pi
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_pi.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_pi
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_pi.
Show proof.
Definition disp_bicat_topos_with_NNO_univ_topos_univ
: disp_bicat bicat_of_univ_topos_with_NNO_univ
:= disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_nno_type
(disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_subobj_classifier
(disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_resizing
(disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_sigma
disp_bicat_topos_with_NNO_univ_pi))).
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_2cells_iscontr disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_2cells_isaprop_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_2cells_isaprop disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_locally_groupoid_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_locally_groupoid disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Definition disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_bicat univ_topos_with_NNO_univ_language
:= reindex_disp_bicat_univ
is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ
mod_univ_topos_with_NNO_univ
disp_bicat_topos_with_NNO_univ_topos_univ
disp_2cells_isaprop_disp_bicat_topos_with_NNO_univ_topos_univ.
Proposition disp_univalent_2_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_univalent_2 disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_univalent_2_0_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_univalent_2_0 disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_univalent_2_1 disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_2cells_iscontr_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_2cells_iscontr disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_2cells_isaprop_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_2cells_isaprop disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_locally_groupoid_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_locally_groupoid disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
: disp_bicat bicat_of_univ_topos_with_NNO_univ
:= disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_nno_type
(disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_subobj_classifier
(disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_resizing
(disp_dirprod_bicat
disp_bicat_topos_with_NNO_univ_sigma
disp_bicat_topos_with_NNO_univ_pi))).
Proposition disp_univalent_2_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_univalent_2 disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
repeat (use is_univalent_2_dirprod_bicat).
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_nno_type.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_subobj_classifier.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_resizing.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_sigma.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_pi.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_nno_type.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_subobj_classifier.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_resizing.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_sigma.
- exact disp_univalent_2_disp_bicat_topos_with_NNO_univ_pi.
Proposition disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_univalent_2_0 disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_univalent_2_1 disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_2cells_iscontr disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
Proposition disp_2cells_isaprop_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_2cells_isaprop disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
use disp_2cells_isaprop_from_disp_2cells_iscontr.
exact disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
exact disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Proposition disp_locally_groupoid_disp_bicat_topos_with_NNO_univ_topos_univ
: disp_locally_groupoid disp_bicat_topos_with_NNO_univ_topos_univ.
Show proof.
use disp_2cells_isgroupoid_from_disp_2cells_iscontr.
exact disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
exact disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_bicat univ_topos_with_NNO_univ_language
:= reindex_disp_bicat_univ
is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ
mod_univ_topos_with_NNO_univ
disp_bicat_topos_with_NNO_univ_topos_univ
disp_2cells_isaprop_disp_bicat_topos_with_NNO_univ_topos_univ.
Proposition disp_univalent_2_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_univalent_2 disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
use disp_univalent_2_reindex_disp_bicat.
- exact disp_locally_groupoid_disp_bicat_topos_with_NNO_univ_topos_univ.
- exact is_univalent_2_1_univ_topos_with_NNO_univ_language.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_topos_univ.
- exact disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_topos_univ.
- exact disp_locally_groupoid_disp_bicat_topos_with_NNO_univ_topos_univ.
- exact is_univalent_2_1_univ_topos_with_NNO_univ_language.
- exact is_univalent_2_1_bicat_of_univ_topos_with_NNO_univ.
- exact disp_univalent_2_0_disp_bicat_topos_with_NNO_univ_topos_univ.
- exact disp_univalent_2_1_disp_bicat_topos_with_NNO_univ_topos_univ.
Proposition disp_univalent_2_0_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_univalent_2_0 disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_univalent_2_1_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_univalent_2_1 disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
Proposition disp_2cells_iscontr_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_2cells_iscontr disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
refine (disp_2cells_iscontr_reindex_disp_bicat _ _ _ _ _).
apply disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
apply disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Proposition disp_2cells_isaprop_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_2cells_isaprop disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
use disp_2cells_isaprop_from_disp_2cells_iscontr.
exact disp_2cells_iscontr_disp_bicat_univ_topos_with_NNO_topos_univ_language.
exact disp_2cells_iscontr_disp_bicat_univ_topos_with_NNO_topos_univ_language.
Proposition disp_locally_groupoid_disp_bicat_univ_topos_with_NNO_topos_univ_language
: disp_locally_groupoid disp_bicat_univ_topos_with_NNO_topos_univ_language.
Show proof.
use disp_2cells_isgroupoid_from_disp_2cells_iscontr.
exact disp_2cells_iscontr_disp_bicat_univ_topos_with_NNO_topos_univ_language.
exact disp_2cells_iscontr_disp_bicat_univ_topos_with_NNO_topos_univ_language.
Definition bicat_topos_with_NNO_univ_topos_univ
: bicat
:= total_bicat disp_bicat_topos_with_NNO_univ_topos_univ.
Definition topos_with_NNO_univ_topos_univ
: UU
:= bicat_topos_with_NNO_univ_topos_univ.
Coercion to_topos_with_NNO_univ
(E : topos_with_NNO_univ_topos_univ)
: univ_topos_with_NNO_univ
:= pr1 E.
Section UnivAccessors.
Context (E : topos_with_NNO_univ_topos_univ).
Definition topos_with_NNO_univ_topos_univ_pnno
: pnno_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_NNO E)
:= pr12 E.
Definition topos_with_NNO_univ_topos_univ_subobject_classifier
: subobject_classifier_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_subobject_classifier E)
:= pr122 E.
Definition topos_with_NNO_univ_topos_univ_resizing
: cat_univ_stable_codes_resizing E
:= pr1 (pr222 E).
Definition topos_with_NNO_univ_topos_univ_sigma
: cat_univ_stable_codes_sigma E
:= pr12 (pr222 E).
Definition topos_with_NNO_univ_topos_univ_pi
: cat_univ_stable_codes_pi
(C := E)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E)
:= pr22 (pr222 E).
End UnivAccessors.
Definition make_topos_with_NNO_univ_topos_univ
(E : univ_topos_with_NNO_univ)
(nc : pnno_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_NNO E))
(Ωc : subobject_classifier_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_subobject_classifier E))
(rc : cat_univ_stable_codes_resizing E)
(Σc : cat_univ_stable_codes_sigma E)
(Πc : cat_univ_stable_codes_pi
(C := E)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E))
: topos_with_NNO_univ_topos_univ
:= E ,, nc ,, Ωc ,, rc ,, Σc ,, Πc.
Definition functor_topos_with_NNO_univ_topos_univ
(E₁ E₂ : topos_with_NNO_univ_topos_univ)
: UU
:= E₁ --> E₂.
Coercion functor_topos_with_NNO_univ_topos_univ_to_functor_topos_with_NNO_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_topos_with_NNO_univ E₁ E₂
:= pr1 F.
Definition functor_topos_with_NNO_univ_topos_univ_pnno
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_pnno_in_cat_univ
(topos_with_NNO_univ_topos_univ_pnno E₁)
(topos_with_NNO_univ_topos_univ_pnno E₂)
(functor_topos_with_NNO_universe F)
(preserves_NNO_functor_topos_with_NNO_univ F)
:= pr12 F.
Definition functor_topos_with_NNO_univ_topos_univ_subobject_classifier
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_subobject_classifier_in_cat_univ
(topos_with_NNO_univ_topos_univ_subobject_classifier E₁)
(topos_with_NNO_univ_topos_univ_subobject_classifier E₂)
(functor_topos_with_NNO_universe F)
(preserves_subobject_classifier_functor_topos_with_NNO_univ F)
:= pr122 F.
Definition functor_topos_with_NNO_univ_topos_univ_resizing
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_stable_resizing_codes
(topos_with_NNO_univ_topos_univ_resizing E₁)
(topos_with_NNO_univ_topos_univ_resizing E₂)
(functor_topos_with_NNO_universe F)
:= pr1 (pr222 F).
Definition functor_topos_with_NNO_univ_topos_univ_sigma
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_stable_codes_sigma
(topos_with_NNO_univ_topos_univ_sigma E₁)
(topos_with_NNO_univ_topos_univ_sigma E₂)
(functor_topos_with_NNO_universe F)
:= pr12 (pr222 F).
Definition functor_topos_with_NNO_univ_topos_univ_pi
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_stable_codes_pi
(topos_with_NNO_univ_topos_univ_pi E₁)
(topos_with_NNO_univ_topos_univ_pi E₂)
(functor_topos_with_NNO_universe F)
(preserves_locally_cartesian_closed_functor_topos_with_NNO_univ F)
:= pr22 (pr222 F).
Definition make_functor_topos_with_NNO_univ_topos_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
(Fn : functor_preserves_pnno_in_cat_univ
(topos_with_NNO_univ_topos_univ_pnno E₁)
(topos_with_NNO_univ_topos_univ_pnno E₂)
(functor_topos_with_NNO_universe F)
(preserves_NNO_functor_topos_with_NNO_univ F))
(FΩ : functor_preserves_subobject_classifier_in_cat_univ
(topos_with_NNO_univ_topos_univ_subobject_classifier E₁)
(topos_with_NNO_univ_topos_univ_subobject_classifier E₂)
(functor_topos_with_NNO_universe F)
(preserves_subobject_classifier_functor_topos_with_NNO_univ F))
(Fr : functor_preserves_stable_resizing_codes
(topos_with_NNO_univ_topos_univ_resizing E₁)
(topos_with_NNO_univ_topos_univ_resizing E₂)
(functor_topos_with_NNO_universe F))
(FΣ : functor_preserves_stable_codes_sigma
(topos_with_NNO_univ_topos_univ_sigma E₁)
(topos_with_NNO_univ_topos_univ_sigma E₂)
(functor_topos_with_NNO_universe F))
(FΠ : functor_preserves_stable_codes_pi
(topos_with_NNO_univ_topos_univ_pi E₁)
(topos_with_NNO_univ_topos_univ_pi E₂)
(functor_topos_with_NNO_universe F)
(preserves_locally_cartesian_closed_functor_topos_with_NNO_univ F))
: functor_topos_with_NNO_univ_topos_univ E₁ E₂
:= F ,, Fn ,, FΩ ,, Fr ,, FΣ ,, FΠ.
Definition nat_trans_topos_with_NNO_univ_topos_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: UU
:= F ==> G.
Coercion nat_trans_topos_with_NNO_univ_topos_univ_to_nat_trans_topos_NNO_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
{F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ_topos_univ F G)
: nat_trans_topos_with_NNO_univ F G
:= pr1 τ.
Definition make_nat_trans_topos_with_NNO_univ_topos_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
{F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ F G)
: nat_trans_topos_with_NNO_univ_topos_univ F G
:= τ ,, tt ,, tt ,, tt ,, tt ,, tt.
Proposition nat_trans_topos_with_NNO_univ_topos_univ_eq
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
{F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂}
{τ₁ τ₂ : nat_trans_topos_with_NNO_univ_topos_univ F G}
(p : (τ₁ : nat_trans_topos_with_NNO_univ F G) = τ₂)
: τ₁ = τ₂.
Show proof.
Definition bicat_univ_topos_with_NNO_topos_univ_language
: bicat
:= total_bicat disp_bicat_univ_topos_with_NNO_topos_univ_language.
Definition univ_topos_with_NNO_topos_univ_language
: UU
:= bicat_univ_topos_with_NNO_topos_univ_language.
Definition univ_topos_with_NNO_topos_univ_language_to_comp_cat
(C : univ_topos_with_NNO_topos_univ_language)
: topos_NNO_univ_comp_cat
:= pr1 C.
Definition univ_topos_with_NNO_topos_univ_language_functor
(C₁ C₂ : univ_topos_with_NNO_topos_univ_language)
: UU
:= C₁ --> C₂.
Definition univ_topos_with_NNO_topos_univ_language_comp_cat_functor
{C₁ C₂ : univ_topos_with_NNO_topos_univ_language}
(F : univ_topos_with_NNO_topos_univ_language_functor C₁ C₂)
: topos_NNO_univ_comp_cat_functor
(univ_topos_with_NNO_topos_univ_language_to_comp_cat C₁)
(univ_topos_with_NNO_topos_univ_language_to_comp_cat C₂)
:= pr1 F.
Definition univ_topos_with_NNO_topos_univ_language_nat_trans
{C₁ C₂ : univ_topos_with_NNO_topos_univ_language}
(F G : univ_topos_with_NNO_topos_univ_language_functor C₁ C₂)
: UU
:= F ==> G.
Definition univ_topos_with_NNO_topos_univ_language_nat_comp_cat_trans
{C₁ C₂ : univ_topos_with_NNO_topos_univ_language}
{F G : univ_topos_with_NNO_topos_univ_language_functor C₁ C₂}
(τ : univ_topos_with_NNO_topos_univ_language_nat_trans F G)
: topos_NNO_univ_comp_cat_nat_trans
(univ_topos_with_NNO_topos_univ_language_comp_cat_functor F)
(univ_topos_with_NNO_topos_univ_language_comp_cat_functor G)
:= pr1 τ.
: bicat
:= total_bicat disp_bicat_topos_with_NNO_univ_topos_univ.
Definition topos_with_NNO_univ_topos_univ
: UU
:= bicat_topos_with_NNO_univ_topos_univ.
Coercion to_topos_with_NNO_univ
(E : topos_with_NNO_univ_topos_univ)
: univ_topos_with_NNO_univ
:= pr1 E.
Section UnivAccessors.
Context (E : topos_with_NNO_univ_topos_univ).
Definition topos_with_NNO_univ_topos_univ_pnno
: pnno_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_NNO E)
:= pr12 E.
Definition topos_with_NNO_univ_topos_univ_subobject_classifier
: subobject_classifier_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_subobject_classifier E)
:= pr122 E.
Definition topos_with_NNO_univ_topos_univ_resizing
: cat_univ_stable_codes_resizing E
:= pr1 (pr222 E).
Definition topos_with_NNO_univ_topos_univ_sigma
: cat_univ_stable_codes_sigma E
:= pr12 (pr222 E).
Definition topos_with_NNO_univ_topos_univ_pi
: cat_univ_stable_codes_pi
(C := E)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E)
:= pr22 (pr222 E).
End UnivAccessors.
Definition make_topos_with_NNO_univ_topos_univ
(E : univ_topos_with_NNO_univ)
(nc : pnno_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_NNO E))
(Ωc : subobject_classifier_in_cat_univ
(C := E)
(univ_topos_with_NNO_univ_subobject_classifier E))
(rc : cat_univ_stable_codes_resizing E)
(Σc : cat_univ_stable_codes_sigma E)
(Πc : cat_univ_stable_codes_pi
(C := E)
(is_locally_cartesian_closed_univ_topos_with_NNO_univ E))
: topos_with_NNO_univ_topos_univ
:= E ,, nc ,, Ωc ,, rc ,, Σc ,, Πc.
Definition functor_topos_with_NNO_univ_topos_univ
(E₁ E₂ : topos_with_NNO_univ_topos_univ)
: UU
:= E₁ --> E₂.
Coercion functor_topos_with_NNO_univ_topos_univ_to_functor_topos_with_NNO_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_topos_with_NNO_univ E₁ E₂
:= pr1 F.
Definition functor_topos_with_NNO_univ_topos_univ_pnno
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_pnno_in_cat_univ
(topos_with_NNO_univ_topos_univ_pnno E₁)
(topos_with_NNO_univ_topos_univ_pnno E₂)
(functor_topos_with_NNO_universe F)
(preserves_NNO_functor_topos_with_NNO_univ F)
:= pr12 F.
Definition functor_topos_with_NNO_univ_topos_univ_subobject_classifier
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_subobject_classifier_in_cat_univ
(topos_with_NNO_univ_topos_univ_subobject_classifier E₁)
(topos_with_NNO_univ_topos_univ_subobject_classifier E₂)
(functor_topos_with_NNO_universe F)
(preserves_subobject_classifier_functor_topos_with_NNO_univ F)
:= pr122 F.
Definition functor_topos_with_NNO_univ_topos_univ_resizing
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_stable_resizing_codes
(topos_with_NNO_univ_topos_univ_resizing E₁)
(topos_with_NNO_univ_topos_univ_resizing E₂)
(functor_topos_with_NNO_universe F)
:= pr1 (pr222 F).
Definition functor_topos_with_NNO_univ_topos_univ_sigma
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_stable_codes_sigma
(topos_with_NNO_univ_topos_univ_sigma E₁)
(topos_with_NNO_univ_topos_univ_sigma E₂)
(functor_topos_with_NNO_universe F)
:= pr12 (pr222 F).
Definition functor_topos_with_NNO_univ_topos_univ_pi
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: functor_preserves_stable_codes_pi
(topos_with_NNO_univ_topos_univ_pi E₁)
(topos_with_NNO_univ_topos_univ_pi E₂)
(functor_topos_with_NNO_universe F)
(preserves_locally_cartesian_closed_functor_topos_with_NNO_univ F)
:= pr22 (pr222 F).
Definition make_functor_topos_with_NNO_univ_topos_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F : functor_topos_with_NNO_univ E₁ E₂)
(Fn : functor_preserves_pnno_in_cat_univ
(topos_with_NNO_univ_topos_univ_pnno E₁)
(topos_with_NNO_univ_topos_univ_pnno E₂)
(functor_topos_with_NNO_universe F)
(preserves_NNO_functor_topos_with_NNO_univ F))
(FΩ : functor_preserves_subobject_classifier_in_cat_univ
(topos_with_NNO_univ_topos_univ_subobject_classifier E₁)
(topos_with_NNO_univ_topos_univ_subobject_classifier E₂)
(functor_topos_with_NNO_universe F)
(preserves_subobject_classifier_functor_topos_with_NNO_univ F))
(Fr : functor_preserves_stable_resizing_codes
(topos_with_NNO_univ_topos_univ_resizing E₁)
(topos_with_NNO_univ_topos_univ_resizing E₂)
(functor_topos_with_NNO_universe F))
(FΣ : functor_preserves_stable_codes_sigma
(topos_with_NNO_univ_topos_univ_sigma E₁)
(topos_with_NNO_univ_topos_univ_sigma E₂)
(functor_topos_with_NNO_universe F))
(FΠ : functor_preserves_stable_codes_pi
(topos_with_NNO_univ_topos_univ_pi E₁)
(topos_with_NNO_univ_topos_univ_pi E₂)
(functor_topos_with_NNO_universe F)
(preserves_locally_cartesian_closed_functor_topos_with_NNO_univ F))
: functor_topos_with_NNO_univ_topos_univ E₁ E₂
:= F ,, Fn ,, FΩ ,, Fr ,, FΣ ,, FΠ.
Definition nat_trans_topos_with_NNO_univ_topos_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
(F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂)
: UU
:= F ==> G.
Coercion nat_trans_topos_with_NNO_univ_topos_univ_to_nat_trans_topos_NNO_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
{F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ_topos_univ F G)
: nat_trans_topos_with_NNO_univ F G
:= pr1 τ.
Definition make_nat_trans_topos_with_NNO_univ_topos_univ
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
{F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂}
(τ : nat_trans_topos_with_NNO_univ F G)
: nat_trans_topos_with_NNO_univ_topos_univ F G
:= τ ,, tt ,, tt ,, tt ,, tt ,, tt.
Proposition nat_trans_topos_with_NNO_univ_topos_univ_eq
{E₁ E₂ : topos_with_NNO_univ_topos_univ}
{F G : functor_topos_with_NNO_univ_topos_univ E₁ E₂}
{τ₁ τ₂ : nat_trans_topos_with_NNO_univ_topos_univ F G}
(p : (τ₁ : nat_trans_topos_with_NNO_univ F G) = τ₂)
: τ₁ = τ₂.
Show proof.
use subtypePath.
{
intro ; intros.
apply disp_2cells_isaprop_disp_bicat_topos_with_NNO_univ_topos_univ.
}
exact p.
{
intro ; intros.
apply disp_2cells_isaprop_disp_bicat_topos_with_NNO_univ_topos_univ.
}
exact p.
Definition bicat_univ_topos_with_NNO_topos_univ_language
: bicat
:= total_bicat disp_bicat_univ_topos_with_NNO_topos_univ_language.
Definition univ_topos_with_NNO_topos_univ_language
: UU
:= bicat_univ_topos_with_NNO_topos_univ_language.
Definition univ_topos_with_NNO_topos_univ_language_to_comp_cat
(C : univ_topos_with_NNO_topos_univ_language)
: topos_NNO_univ_comp_cat
:= pr1 C.
Definition univ_topos_with_NNO_topos_univ_language_functor
(C₁ C₂ : univ_topos_with_NNO_topos_univ_language)
: UU
:= C₁ --> C₂.
Definition univ_topos_with_NNO_topos_univ_language_comp_cat_functor
{C₁ C₂ : univ_topos_with_NNO_topos_univ_language}
(F : univ_topos_with_NNO_topos_univ_language_functor C₁ C₂)
: topos_NNO_univ_comp_cat_functor
(univ_topos_with_NNO_topos_univ_language_to_comp_cat C₁)
(univ_topos_with_NNO_topos_univ_language_to_comp_cat C₂)
:= pr1 F.
Definition univ_topos_with_NNO_topos_univ_language_nat_trans
{C₁ C₂ : univ_topos_with_NNO_topos_univ_language}
(F G : univ_topos_with_NNO_topos_univ_language_functor C₁ C₂)
: UU
:= F ==> G.
Definition univ_topos_with_NNO_topos_univ_language_nat_comp_cat_trans
{C₁ C₂ : univ_topos_with_NNO_topos_univ_language}
{F G : univ_topos_with_NNO_topos_univ_language_functor C₁ C₂}
(τ : univ_topos_with_NNO_topos_univ_language_nat_trans F G)
: topos_NNO_univ_comp_cat_nat_trans
(univ_topos_with_NNO_topos_univ_language_comp_cat_functor F)
(univ_topos_with_NNO_topos_univ_language_comp_cat_functor G)
:= pr1 τ.
Definition disp_psfunctor_lang_univ_topos_with_NNO_topos_univ
: disp_psfunctor
disp_bicat_topos_with_NNO_univ_topos_univ
disp_bicat_univ_topos_with_NNO_topos_univ_language
lang_univ_topos_with_NNO_univ
:= reindex_disp_psfunctor_inv_univ
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
internal_language_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition disp_psfunctor_mod_univ_topos_with_NNO_topos_univ
: disp_psfunctor
disp_bicat_univ_topos_with_NNO_topos_univ_language
disp_bicat_topos_with_NNO_univ_topos_univ
mod_univ_topos_with_NNO_univ
:= reindex_disp_psfunctor_univ
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
mod_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition lang_univ_topos_with_NNO_topos_univ
: psfunctor
bicat_topos_with_NNO_univ_topos_univ
bicat_univ_topos_with_NNO_topos_univ_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos_with_NNO_topos_univ.
Definition mod_univ_topos_with_NNO_topos_univ
: psfunctor
bicat_univ_topos_with_NNO_topos_univ_language
bicat_topos_with_NNO_univ_topos_univ
:= total_psfunctor
_ _ _
disp_psfunctor_mod_univ_topos_with_NNO_topos_univ.
Definition disp_biequivalence_unit_counit_topos_with_NNO_topos_univ
: is_disp_biequivalence_unit_counit
disp_bicat_topos_with_NNO_univ_topos_univ
disp_bicat_univ_topos_with_NNO_topos_univ_language
(coherent_is_biequivalence_adjoints
is_univalent_2_univ_topos_with_NNO_univ_language
internal_language_univ_topos_with_NNO_univ)
disp_psfunctor_lang_univ_topos_with_NNO_topos_univ
disp_psfunctor_mod_univ_topos_with_NNO_topos_univ
:= reindex_is_disp_biequivalence_unit_counit_univ_coh
is_univalent_2_univ_topos_with_NNO_univ_language
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
internal_language_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition disp_biequivalence_data_topos_with_NNO_topos_univ
: disp_is_biequivalence_data
disp_bicat_topos_with_NNO_univ_topos_univ
disp_bicat_univ_topos_with_NNO_topos_univ_language
(coherent_is_biequivalence_adjoints
is_univalent_2_univ_topos_with_NNO_univ_language
internal_language_univ_topos_with_NNO_univ)
disp_biequivalence_unit_counit_topos_with_NNO_topos_univ
:= reindex_disp_is_biequivalence_univ_coh
is_univalent_2_univ_topos_with_NNO_univ_language
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
internal_language_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition internal_language_univ_topos_with_NNO_topos_univ
: is_biequivalence lang_univ_topos_with_NNO_topos_univ
:= total_is_biequivalence
_ _ _
disp_biequivalence_data_topos_with_NNO_topos_univ.
: disp_psfunctor
disp_bicat_topos_with_NNO_univ_topos_univ
disp_bicat_univ_topos_with_NNO_topos_univ_language
lang_univ_topos_with_NNO_univ
:= reindex_disp_psfunctor_inv_univ
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
internal_language_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition disp_psfunctor_mod_univ_topos_with_NNO_topos_univ
: disp_psfunctor
disp_bicat_univ_topos_with_NNO_topos_univ_language
disp_bicat_topos_with_NNO_univ_topos_univ
mod_univ_topos_with_NNO_univ
:= reindex_disp_psfunctor_univ
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
mod_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition lang_univ_topos_with_NNO_topos_univ
: psfunctor
bicat_topos_with_NNO_univ_topos_univ
bicat_univ_topos_with_NNO_topos_univ_language
:= total_psfunctor
_ _ _
disp_psfunctor_lang_univ_topos_with_NNO_topos_univ.
Definition mod_univ_topos_with_NNO_topos_univ
: psfunctor
bicat_univ_topos_with_NNO_topos_univ_language
bicat_topos_with_NNO_univ_topos_univ
:= total_psfunctor
_ _ _
disp_psfunctor_mod_univ_topos_with_NNO_topos_univ.
Definition disp_biequivalence_unit_counit_topos_with_NNO_topos_univ
: is_disp_biequivalence_unit_counit
disp_bicat_topos_with_NNO_univ_topos_univ
disp_bicat_univ_topos_with_NNO_topos_univ_language
(coherent_is_biequivalence_adjoints
is_univalent_2_univ_topos_with_NNO_univ_language
internal_language_univ_topos_with_NNO_univ)
disp_psfunctor_lang_univ_topos_with_NNO_topos_univ
disp_psfunctor_mod_univ_topos_with_NNO_topos_univ
:= reindex_is_disp_biequivalence_unit_counit_univ_coh
is_univalent_2_univ_topos_with_NNO_univ_language
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
internal_language_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition disp_biequivalence_data_topos_with_NNO_topos_univ
: disp_is_biequivalence_data
disp_bicat_topos_with_NNO_univ_topos_univ
disp_bicat_univ_topos_with_NNO_topos_univ_language
(coherent_is_biequivalence_adjoints
is_univalent_2_univ_topos_with_NNO_univ_language
internal_language_univ_topos_with_NNO_univ)
disp_biequivalence_unit_counit_topos_with_NNO_topos_univ
:= reindex_disp_is_biequivalence_univ_coh
is_univalent_2_univ_topos_with_NNO_univ_language
is_univalent_2_bicat_of_univ_topos_with_NNO_univ
internal_language_univ_topos_with_NNO_univ
disp_2cells_iscontr_disp_bicat_topos_with_NNO_univ_topos_univ.
Definition internal_language_univ_topos_with_NNO_topos_univ
: is_biequivalence lang_univ_topos_with_NNO_topos_univ
:= total_is_biequivalence
_ _ _
disp_biequivalence_data_topos_with_NNO_topos_univ.