Library UniMath.Bicategories.ComprehensionCat.Universes.UniverseBiequiv
- "The biequivalence of locally cartesian closed categories and Martin-Löf type theories" by Clairambault and Dybjer
- "The internal languages of univalent categories" by Van der Weide
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudoNaturalAdjequiv.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.FinLimToCompCatLemmas.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCompCatUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivActions.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivCell.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivIdent.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.UnitForUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUniv.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition finlim_dfl_comp_cat_biequivalence_unit_counit_universe
: is_disp_biequivalence_unit_counit
_ _
finlim_dfl_comp_cat_biequivalence_unit_counit
finlim_to_dfl_comp_cat_disp_psfunctor_universe
dfl_comp_cat_to_finlim_disp_psfunctor_universe.
Show proof.
Definition finlim_biequiv_dfl_comp_cat_psfunctor_universe
: disp_is_biequivalence_data
_
_
finlim_dfl_comp_cat_biequivalence_adjoints
finlim_dfl_comp_cat_biequivalence_unit_counit_universe.
Show proof.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudoNaturalAdjequiv.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.FinLimToCompCatLemmas.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCompCatUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivActions.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivCell.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivIdent.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.UnitForUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUniv.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition finlim_dfl_comp_cat_biequivalence_unit_counit_universe
: is_disp_biequivalence_unit_counit
_ _
finlim_dfl_comp_cat_biequivalence_unit_counit
finlim_to_dfl_comp_cat_disp_psfunctor_universe
dfl_comp_cat_to_finlim_disp_psfunctor_universe.
Show proof.
use make_disp_biequiv_unit_counit_pointwise_adjequiv_alt.
- exact is_univalent_2_bicat_of_dfl_full_comp_cat.
- exact finlim_dfl_comp_cat_biequivalence_adjoints.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
- exact dfl_comp_cat_to_finlim_disp_psfunctor_unit.
- exact dfl_comp_cat_to_finlim_disp_psfunctor_counit.
- intros C u.
apply disp_left_adjoint_equivalence_comp_cat_universe.
- exact is_univalent_2_bicat_of_dfl_full_comp_cat.
- exact finlim_dfl_comp_cat_biequivalence_adjoints.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
- exact dfl_comp_cat_to_finlim_disp_psfunctor_unit.
- exact dfl_comp_cat_to_finlim_disp_psfunctor_counit.
- intros C u.
apply disp_left_adjoint_equivalence_comp_cat_universe.
Definition finlim_biequiv_dfl_comp_cat_psfunctor_universe
: disp_is_biequivalence_data
_
_
finlim_dfl_comp_cat_biequivalence_adjoints
finlim_dfl_comp_cat_biequivalence_unit_counit_universe.
Show proof.
use (make_disp_biequiv_pointwise_adjequiv_alt _ _).
- exact is_univalent_2_bicat_of_univ_cat_with_finlim.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- intros C u.
apply disp_left_adjoint_equivalence_finlim_universe.
- exact is_univalent_2_bicat_of_univ_cat_with_finlim.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- intros C u.
apply disp_left_adjoint_equivalence_finlim_universe.