Library UniMath.Bicategories.Core.Examples.FibSlice

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.NaturalTransformations.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Adjunctions.
Require Import UniMath.CategoryTheory.DisplayedCats.Equivalences.
Require Import UniMath.CategoryTheory.DisplayedCats.DisplayedFunctorEq.
Require Import UniMath.CategoryTheory.DisplayedCats.EquivalenceOverId.
Require Import UniMath.CategoryTheory.DisplayedCats.DisplayedCatEq.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.AdjointUnique.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Univalence.

Local Open Scope cat.

Section FibSlice.
  Context (C : univalent_category).

1. The fibrational slice bicategory
  Definition fib_slice_precategory_ob_mor
    : precategory_ob_mor.
  Show proof.
    simple refine (_ ,, _).
    - exact ( (D : disp_univalent_category C), cleaving D).
    - exact (λ D₁ D₂, cartesian_disp_functor
                        (functor_identity _)
                        (pr1 D₁)
                        (pr1 D₂)).

  Definition fib_slice_precategory_id_comp
    : precategory_id_comp fib_slice_precategory_ob_mor.
  Show proof.
    simple refine (_ ,, _).
    - exact (λ D, disp_functor_identity (pr1 D)
                  ,,
                  disp_functor_identity_is_cartesian_disp_functor (pr1 D)).
    - exact (λ D₁ D₂ D₃ FF GG,
             disp_functor_over_id_composite (pr1 FF) (pr1 GG)
             ,,
             disp_functor_over_id_composite_is_cartesian (pr2 FF) (pr2 GG)).

  Definition fib_slice_precategory_data
    : precategory_data.
  Show proof.
    simple refine (_ ,, _).
    - exact fib_slice_precategory_ob_mor.
    - exact fib_slice_precategory_id_comp.

  Definition fib_slice_prebicat_1_id_comp_cells
    : prebicat_1_id_comp_cells.
  Show proof.
    simple refine (_ ,, _).
    - exact fib_slice_precategory_data.
    - exact (λ D₁ D₂ FF GG,
             disp_nat_trans
               (nat_trans_id _)
               (pr1 FF)
               (pr1 GG)).

  Definition fib_slice_prebicat_2_id_comp_struct
    : prebicat_2_id_comp_struct fib_slice_prebicat_1_id_comp_cells.
  Show proof.
    repeat split.
    - exact (λ D₁ D₂ FF, disp_nat_trans_id (pr1 FF)).
    - exact (λ D₁ D₂ FF, disp_nat_trans_id (pr1 FF)).
    - exact (λ D₁ D₂ FF, disp_nat_trans_id (pr1 FF)).
    - exact (λ D₁ D₂ FF, disp_nat_trans_id (pr1 FF)).
    - exact (λ D₁ D₂ FF, disp_nat_trans_id (pr1 FF)).
    - exact (λ D₁ D₂ D₃ D₃ FF GG HH, disp_nat_trans_id _).
    - exact (λ D₁ D₂ D₃ D₃ FF GG HH, disp_nat_trans_id _).
    - exact (λ D₁ D₂ FF GG HH α β, disp_nat_trans_over_id_comp α β).
    - exact (λ D₁ D₂ D₃ FF GG₁ GG₂ α, disp_nat_trans_over_id_prewhisker (pr1 FF) α).
    - exact (λ D₁ D₂ D₃ FF₁ FF₂ GG α, disp_nat_trans_over_id_postwhisker (pr1 GG) α).

  Definition fib_slice_prebicat_data
    : prebicat_data.
  Show proof.
    simple refine (_ ,, _).
    - exact fib_slice_prebicat_1_id_comp_cells.
    - exact fib_slice_prebicat_2_id_comp_struct.

  Definition fib_slice_prebicat_laws
    : prebicat_laws fib_slice_prebicat_data.
  Show proof.
    repeat split.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_right_disp.
      unfold transportb.
      rewrite transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite mor_disp_transportf_prewhisker.
      rewrite mor_disp_transportf_postwhisker.
      rewrite assoc_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      apply idpath.
    - intros ? ? ? F G ; use disp_nat_trans_eq ; intros ; cbn.
      exact (disp_functor_id (pr1 G) _).
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      apply idpath.
    - intros D₁ D₂ D₃ FF₁ FF₂ FF₃ GG α β.
      use disp_nat_trans_eq ; intros x xx ; cbn.
      rewrite (disp_functor_transportf _ (pr1 GG)).
      rewrite disp_functor_comp.
      unfold transportb.
      rewrite transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp, id_right_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp, id_right_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp, id_right_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp, id_right_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp, id_right_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intros D₁ D₂ D₃ FF GG HH II α β.
      use disp_nat_trans_eq ; intros x xx ; cbn in *.
      etrans.
      {
        apply maponpaths.
        exact (disp_nat_trans_ax β (α x xx)).
      }
      unfold transportb.
      rewrite transport_f_f.
      apply maponpaths_2.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intro ; intros ; use disp_nat_trans_eq ; intros ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      apply transportf_set.
      apply homset_property.
    - intros D₁ D₂ D₃ F G.
      use disp_nat_trans_eq ; intros x xx ; cbn.
      rewrite id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      rewrite (disp_functor_id (pr1 G)).
      cbn.
      apply transportf_set.
      apply homset_property.
    - intros D₁ D₂ D₃ D₄ D₅ FF GG HH II.
      use disp_nat_trans_eq ; intros ; cbn.
      rewrite mor_disp_transportf_postwhisker.
      rewrite !id_left_disp.
      unfold transportb.
      rewrite !transport_f_f.
      rewrite mor_disp_transportf_postwhisker.
      rewrite transport_f_f.
      rewrite id_left_disp.
      unfold transportb.
      rewrite transport_f_f.
      rewrite (disp_functor_id (pr1 II)).
      unfold transportb.
      rewrite transport_f_f.
      apply maponpaths_2.
      apply homset_property.

  Definition fib_slice_prebicat
    : prebicat.
  Show proof.
    simple refine (_ ,, _).
    - exact fib_slice_prebicat_data.
    - exact fib_slice_prebicat_laws.

  Definition fib_slice_bicat
    : bicat.
  Show proof.
    simple refine (_ ,, _).
    - exact fib_slice_prebicat.
    - intro ; intros.
      apply isaset_disp_nat_trans.

2. Invertible 2-cells in the fibrational slice bicategory
  Definition is_invertible_2cell_fib_slice
             {D₁ D₂ : fib_slice_bicat}
             {G₁ G₂ : D₁ --> D₂}
             (α : G₁ ==> G₂)
             ( : is_disp_nat_z_iso (nat_z_iso_id (functor_identity C)) α)
    : is_invertible_2cell α.
  Show proof.

  Definition disp_nat_z_iso_to_inv2cell_fib
             {D₁ D₂ : fib_slice_bicat}
             {G₁ G₂ : D₁ --> D₂}
             (τ : disp_nat_z_iso
                    (pr1 G₁) (pr1 G₂)
                    (nat_z_iso_id (functor_identity C)))
    : invertible_2cell G₁ G₂.
  Show proof.
    use make_invertible_2cell.
    - exact (pr1 τ).
    - apply is_invertible_2cell_fib_slice.
      exact (pr2 τ).

  Definition from_is_invertible_2cell_fib_slice
             {D₁ D₂ : fib_slice_bicat}
             {G₁ G₂ : D₁ --> D₂}
             (α : G₁ ==> G₂)
             ( : is_invertible_2cell α)
    : is_disp_nat_z_iso (nat_z_iso_id (functor_identity C)) α.
  Show proof.
    intros x xx.
    simple refine (_ ,, _ ,, _).
    - exact (pr1 (^-1) x xx).
    - abstract
        (use transportb_transpose_right ;
         refine (_ @ maponpaths (λ z, pr1 z x xx) (vcomp_linv )) ;
         cbn ;
         apply maponpaths_2 ;
         apply homset_property).
    - abstract
        (use transportb_transpose_right ;
         refine (_ @ maponpaths (λ z, pr1 z x xx) (vcomp_rinv )) ;
         cbn ;
         apply maponpaths_2 ;
         apply homset_property).

  Definition inv2cell_to_disp_nat_z_iso_fib
             {D₁ D₂ : fib_slice_bicat}
             {G₁ G₂ : D₁ --> D₂}
             (τ : invertible_2cell G₁ G₂)
    : disp_nat_z_iso
        (pr1 G₁) (pr1 G₂)
        (nat_z_iso_id (functor_identity C))
    := pr1 τ ,, from_is_invertible_2cell_fib_slice (pr1 τ) (pr2 τ).

  Definition invertible_2cell_fib_slice_weq
             {D₁ D₂ : fib_slice_bicat}
             (G₁ G₂ : D₁ --> D₂)
    : disp_nat_z_iso (pr1 G₁) (pr1 G₂) (nat_z_iso_id _)
      
      invertible_2cell G₁ G₂.
  Show proof.
    use weq_iso.
    - exact disp_nat_z_iso_to_inv2cell_fib.
    - exact inv2cell_to_disp_nat_z_iso_fib.
    - abstract
        (intro τ ;
         use subtypePath ; [ intro ; apply isaprop_is_disp_nat_z_iso | ] ;
         apply idpath).
    - abstract
        (intro τ ;
         use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ;
         apply idpath).

3. Local univalence of the fibrational slice bicategory
  Proposition is_univalent_2_1_fib_slice_bicat
    : is_univalent_2_1 fib_slice_bicat.
  Show proof.
    intros D₁ D₂ F G.
    use weqhomot.
    - refine (invertible_2cell_fib_slice_weq F G
               disp_functor_eq_weq (pr1 F) (pr1 G) (pr1 D₂)
               path_sigma_hprop _ _ _ _)%weq.
      apply isaprop_is_cartesian_disp_functor.
    - abstract
        (intro p ;
         induction p ;
         use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ;
         use disp_nat_trans_eq ;
         intros x xx ; cbn ;
         apply idpath).

4. Adjoint equivalences in the fibrational slice bicategory
  Definition left_adjoint_equivalence_fib_slice
             {D₁ D₂ : fib_slice_bicat}
             (F : D₁ --> D₂)
             (HF : is_equiv_over_id (pr1 F))
    : left_adjoint_equivalence F.
  Show proof.
    use equiv_to_adjequiv.
    simple refine (((_ ,, _) ,, (_ ,, _)) ,, _ ,, _).
    - exact HF.
    - exact (is_cartesian_equiv_over_id (equiv_inv _ HF)).
    - exact (unit_over_id HF).
    - exact (counit_over_id HF).
    - use is_invertible_2cell_fib_slice.
      intros x xx.
      exact (is_z_iso_unit_over_id HF x xx).
    - use is_invertible_2cell_fib_slice.
      intros x xx.
      exact (is_z_iso_counit_over_id HF x xx).

  Definition adj_equiv_fib_slice
             {D₁ D₂ : fib_slice_bicat}
             (F : disp_functor (functor_identity C) (pr1 D₁) (pr1 D₂))
             (HF : is_equiv_over_id F)
    : adjoint_equivalence D₁ D₂.
  Show proof.
    simple refine ((F ,, _) ,, _).
    - exact (is_cartesian_equiv_over_id HF).
    - exact (left_adjoint_equivalence_fib_slice (_ ,, _) HF).

  Proposition from_left_adjoint_equivalence_fib_slice
              {D₁ D₂ : fib_slice_bicat}
              (F : D₁ --> D₂)
              (HF : left_adjoint_equivalence F)
    : is_equiv_over_id (pr1 F).
  Show proof.
    simple refine (((_ ,, (_ ,, _)) ,, (_ ,, _)) ,, (_ ,, _)).
    - exact (pr1 (left_adjoint_right_adjoint HF)).
    - exact (left_adjoint_unit HF).
    - exact (left_adjoint_counit HF).
    - abstract
        (intros x xx ; cbn ;
         pose (p := maponpaths (λ z, pr1 z x xx) (internal_triangle1 HF)) ;
         cbn in p ;
         rewrite !mor_disp_transportf_postwhisker in p ;
         rewrite !transport_f_f in p ;
         rewrite id_right_disp in p ;
         unfold transportb in p ;
         rewrite transport_f_f in p ;
         rewrite id_right_disp in p ;
         unfold transportb in p ;
         rewrite mor_disp_transportf_postwhisker in p ;
         rewrite transport_f_f in p ;
         rewrite id_left_disp in p ;
         unfold transportb in p ;
         rewrite mor_disp_transportf_postwhisker in p ;
         rewrite transport_f_f in p ;
         refine (transportb_transpose_right p @ _) ;
         apply maponpaths_2 ;
         apply homset_property).
    - abstract
        (intros x xx ; cbn ;
         pose (p := maponpaths (λ z, pr1 z x xx) (internal_triangle2 HF)) ;
         cbn in p ;
         rewrite !mor_disp_transportf_postwhisker in p ;
         rewrite !transport_f_f in p ;
         rewrite id_right_disp in p ;
         unfold transportb in p ;
         rewrite transport_f_f in p ;
         rewrite id_right_disp in p ;
         unfold transportb in p ;
         rewrite mor_disp_transportf_postwhisker in p ;
         rewrite transport_f_f in p ;
         rewrite id_left_disp in p ;
         unfold transportb in p ;
         rewrite mor_disp_transportf_postwhisker in p ;
         rewrite transport_f_f in p ;
         refine (transportb_transpose_right p @ _) ;
         apply maponpaths_2 ;
         apply homset_property).
    - intros x xx.
      exact (from_is_invertible_2cell_fib_slice _ (pr122 HF) x xx).
    - intros x xx.
      exact (from_is_invertible_2cell_fib_slice _ (pr222 HF) x xx).

  Definition adj_equiv_fib_slice_weq
             (D₁ D₂ : fib_slice_bicat)
    : ( (F : disp_functor (functor_identity C) (pr1 D₁) (pr1 D₂)), is_equiv_over_id F)
      
      adjoint_equivalence D₁ D₂.
  Show proof.
    use weq_iso.
    - exact (λ F, adj_equiv_fib_slice (pr1 F) (pr2 F)).
    - exact (λ F, pr11 F ,, from_left_adjoint_equivalence_fib_slice _ (pr2 F)).
    - abstract
        (intros F ;
         use subtypePath ; [ intro ; apply (isaprop_is_equiv_over_id (pr1 D₁) (pr1 D₂)) | ] ;
         apply idpath).
    - abstract
        (intro F ;
         use subtypePath ;
         [ intro ;
           apply (isaprop_left_adjoint_equivalence _ is_univalent_2_1_fib_slice_bicat)
         | ] ;
         use subtypePath ; [ intro ; apply isaprop_is_cartesian_disp_functor | ] ;
         cbn ;
         apply idpath).

5. Global univalence of the fibrational slice bicategory
  Proposition is_univalent_2_0_fib_slice_bicat
    : is_univalent_2_0 fib_slice_bicat.
  Show proof.
    intros D₁ D₂.
    use weqhomot.
    - refine (adj_equiv_fib_slice_weq D₁ D₂
               disp_cat_eq (pr1 D₁) (pr1 D₂) (pr1 D₁) (pr1 D₂)
               path_sigma_hprop _ _ _ _
               path_sigma_hprop _ _ _ _)%weq.
      + apply isaprop_cleaving.
        apply (pr1 D₂).
      + apply isaprop_is_univalent_disp.
    - abstract
        (intro p ;
         induction p ;
         use subtypePath ;
         [ intro ;
           apply (isaprop_left_adjoint_equivalence _ is_univalent_2_1_fib_slice_bicat)
         | ] ;
         use subtypePath ; [ intro ; apply isaprop_is_cartesian_disp_functor | ] ;
         apply idpath).

  Proposition is_univalent_2_fib_slice_bicat
    : is_univalent_2 fib_slice_bicat.
  Show proof.
    split.
    - exact is_univalent_2_0_fib_slice_bicat.
    - exact is_univalent_2_1_fib_slice_bicat.
End FibSlice.