Library UniMath.CategoryTheory.Actegories.ActionBasedStrongMonads

  • the notion of strong monads w.r.t. monoidal actions (a generalization of the notion w.r.t. a monad)
  • an instantiation to strong monads in monoidal categories
see https://ncatlab.org/nlab/show/strong+monad for a general bicategorical formulation and for the one w.r.t. a monad, the present notion is intermediately abstract/general and only sketched on that page
author: Ralph Matthes 2022

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Functors.
Require Import UniMath.CategoryTheory.Actegories.Actegories.
Require Import UniMath.CategoryTheory.Actegories.MorphismsOfActegories.
Require Import UniMath.CategoryTheory.Actegories.ConstructionOfActegories.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.

Local Open Scope cat.

Import BifunctorNotations.
Import MonoidalNotations.
Import ActegoryNotations.

Section A.

Context {V : category} {Mon_V : monoidal V} {C : category} (Act : actegory Mon_V C).

Definition ηandμlinear {M: Monad C} (Ml : lineator_lax Mon_V Act Act M) : UU :=
  is_linear_nat_trans (identity_lineator_lax Mon_V Act) Ml (η M) ×
    is_linear_nat_trans (comp_lineator_lax Mon_V Ml Ml) Ml (μ M).

Definition ηandμlinearnicer {M: Monad C} (Ml : lineator_lax Mon_V Act Act M) : UU :=
   (v : V) (x : C), η M (v _{Act} x) = v ⊗^{Act}_{l} η M x · Ml v x
                   × v ⊗^{Act}_{l} μ M x · Ml v x = Ml v (M x) · #M (Ml v x) · μ M (v _{Act} x).

Lemma ηandμlinearimpliesnicer {M: Monad C} (Ml : lineator_lax Mon_V Act Act M) (ηandμlin : ηandμlinear Ml) : ηandμlinearnicer Ml.
Show proof.
  split.
  - etrans.
    2: { apply ηandμlin. }
    apply pathsinv0, id_left.
  - apply pathsinv0, ηandμlin.

Lemma ηandμlinearfollowsfromnicer {M: Monad C} (Ml : lineator_lax Mon_V Act Act M) (ηandμlinn : ηandμlinearnicer Ml) : ηandμlinear Ml.
Show proof.
  split.
  - red; intros.
    etrans.
    2: { apply ηandμlinn. }
    apply id_left.
  - red; intros.
    apply pathsinv0, ηandμlinn.

Definition actionbasedstrongmonads_cat_disp : disp_cat (category_Monad C).
Show proof.
  use tpair.
  - use tpair.
    + use make_disp_cat_ob_mor.
      * intro M.
        exact ( Ml : lineator_lax Mon_V Act Act (M: Monad C), ηandμlinear Ml).
      * intros M N [Ml islinM] [Nl islinN] α.
        exact (is_linear_nat_trans Ml Nl (nat_trans_from_monad_mor _ _ α)).
    + split.
      * intros M [Ml [islinMη islimMμ]]. cbn.
        apply is_linear_nat_trans_identity.
      * intros M N O α α' Mll Nll Oll islntα islntβ.
        exact (is_linear_nat_trans_comp (pr1 Mll) (pr1 Nll) (pr1 Oll) islntα islntβ).
  - repeat split; intros; try apply isaprop_is_linear_nat_trans.
    apply isasetaprop; apply isaprop_is_linear_nat_trans.

Definition actionbasedstrongmonads_cat_total : category := total_category actionbasedstrongmonads_cat_disp.

End A.

Section StrongMonads.

  Context {C : category} (M : monoidal C).

Definition strongmonads_cat_disp : disp_cat (category_Monad C) :=
  actionbasedstrongmonads_cat_disp (actegory_with_canonical_self_action M).

Definition strongmonads_cat_total : category := total_category strongmonads_cat_disp.

End StrongMonads.