Library UniMath.Bicategories.DisplayedBicats.DispBiequivalence
Displayed biequivalence.
Contents:
- Definition of displayed biequivalence.
- Associated total biequivalence.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.Modifications.Modification.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Import PseudoFunctor.Notations.
Local Open Scope cat.
Section DisplayedBiequivalence.
Context {B₁ B₂ : bicat}
(D₁ : disp_bicat B₁)
(D₂ : disp_bicat B₂).
Definition is_disp_biequivalence_unit_counit
{F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
(e : is_biequivalence_unit_counit F G)
(FF : disp_psfunctor D₁ D₂ F) (GG : disp_psfunctor D₂ D₁ G)
: UU
:= disp_pstrans (disp_pseudo_comp F G D₁ D₂ D₁ FF GG)
(disp_pseudo_id D₁)
(unit_of_is_biequivalence e) ×
disp_pstrans (disp_pseudo_comp G F D₂ D₁ D₂ GG FF)
(disp_pseudo_id D₂)
(counit_of_is_biequivalence e).
Definition unit_of_is_disp_biequivalence
{F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
{e : is_biequivalence_unit_counit F G}
{FF : disp_psfunctor D₁ D₂ F} {GG : disp_psfunctor D₂ D₁ G}
(ee : is_disp_biequivalence_unit_counit e FF GG)
: disp_pstrans (disp_pseudo_comp F G D₁ D₂ D₁ FF GG)
(disp_pseudo_id D₁) (unit_of_is_biequivalence e)
:= pr1 ee.
Definition counit_of_is_disp_biequivalence
{F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
{e : is_biequivalence_unit_counit F G}
{FF : disp_psfunctor D₁ D₂ F} {GG : disp_psfunctor D₂ D₁ G}
(ee : is_disp_biequivalence_unit_counit e FF GG)
: disp_pstrans (disp_pseudo_comp G F D₂ D₁ D₂ GG FF)
(disp_pseudo_id D₂)
(counit_of_is_biequivalence e)
:= pr2 ee.
Definition total_is_biequivalence_unit_counit
{F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
{e : is_biequivalence_unit_counit F G}
{FF : disp_psfunctor D₁ D₂ F} {GG : disp_psfunctor D₂ D₁ G}
(ee : is_disp_biequivalence_unit_counit e FF GG)
: is_biequivalence_unit_counit (total_psfunctor _ _ _ FF)
(total_psfunctor _ _ _ GG).
Show proof.
split.
- apply pstrans_on_data_to_pstrans.
pose (unit_of_is_disp_biequivalence ee) as uu.
pose (total_pstrans _ _ _ uu) as tuu.
apply tuu.
- apply pstrans_on_data_to_pstrans.
pose (counit_of_is_disp_biequivalence ee) as uu.
pose (total_pstrans _ _ _ uu) as tuu.
apply tuu.
- apply pstrans_on_data_to_pstrans.
pose (unit_of_is_disp_biequivalence ee) as uu.
pose (total_pstrans _ _ _ uu) as tuu.
apply tuu.
- apply pstrans_on_data_to_pstrans.
pose (counit_of_is_disp_biequivalence ee) as uu.
pose (total_pstrans _ _ _ uu) as tuu.
apply tuu.
Definition disp_is_biequivalence_data
{F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
{e : is_biequivalence_unit_counit F G}
(a : is_biequivalence_adjoints e)
{FF : disp_psfunctor D₁ D₂ F} {GG : disp_psfunctor D₂ D₁ G}
(ee : is_disp_biequivalence_unit_counit e FF GG)
: UU
:= ∑ (uu : disp_pstrans (disp_pseudo_id D₁)
(disp_pseudo_comp _ _ _ _ _ FF GG)
(invunit_of_is_biequivalence a))
(cc : disp_pstrans (disp_pseudo_id D₂)
(disp_pseudo_comp _ _ _ _ _ GG FF)
(invcounit_of_is_biequivalence a)),
(disp_invmodification _ _ _ _
(disp_comp_pstrans
uu
(unit_of_is_disp_biequivalence ee))
(disp_id_pstrans _)
(unitcounit_of_is_biequivalence _) ×
disp_invmodification _ _ _ _
(disp_comp_pstrans
(unit_of_is_disp_biequivalence ee)
uu)
(disp_id_pstrans _)
(unitunit_of_is_biequivalence _)) ×
(disp_invmodification _ _ _ _
(disp_comp_pstrans
cc
(counit_of_is_disp_biequivalence ee))
(disp_id_pstrans _)
(counitcounit_of_is_biequivalence _) ×
disp_invmodification _ _ _ _
(disp_comp_pstrans
(counit_of_is_disp_biequivalence ee)
cc)
(disp_id_pstrans _)
(counitunit_of_is_biequivalence _)).
{F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
{e : is_biequivalence_unit_counit F G}
(a : is_biequivalence_adjoints e)
{FF : disp_psfunctor D₁ D₂ F} {GG : disp_psfunctor D₂ D₁ G}
(ee : is_disp_biequivalence_unit_counit e FF GG)
: UU
:= ∑ (uu : disp_pstrans (disp_pseudo_id D₁)
(disp_pseudo_comp _ _ _ _ _ FF GG)
(invunit_of_is_biequivalence a))
(cc : disp_pstrans (disp_pseudo_id D₂)
(disp_pseudo_comp _ _ _ _ _ GG FF)
(invcounit_of_is_biequivalence a)),
(disp_invmodification _ _ _ _
(disp_comp_pstrans
uu
(unit_of_is_disp_biequivalence ee))
(disp_id_pstrans _)
(unitcounit_of_is_biequivalence _) ×
disp_invmodification _ _ _ _
(disp_comp_pstrans
(unit_of_is_disp_biequivalence ee)
uu)
(disp_id_pstrans _)
(unitunit_of_is_biequivalence _)) ×
(disp_invmodification _ _ _ _
(disp_comp_pstrans
cc
(counit_of_is_disp_biequivalence ee))
(disp_id_pstrans _)
(counitcounit_of_is_biequivalence _) ×
disp_invmodification _ _ _ _
(disp_comp_pstrans
(counit_of_is_disp_biequivalence ee)
cc)
(disp_id_pstrans _)
(counitunit_of_is_biequivalence _)).
Section total_biequivalence.
Context {F : psfunctor B₁ B₂} {G : psfunctor B₂ B₁}
{e : is_biequivalence_unit_counit F G}
(a : is_biequivalence_adjoints e)
{FF : disp_psfunctor D₁ D₂ F} {GG : disp_psfunctor D₂ D₁ G}
{ee : is_disp_biequivalence_unit_counit e FF GG}
(aa : disp_is_biequivalence_data a ee).
Definition total_biequivalence_unit_inv
: pstrans (id_psfunctor (total_bicat D₁))
(comp_psfunctor (total_psfunctor D₂ D₁ G GG) (total_psfunctor D₁ D₂ F FF)).
Show proof.
apply pstrans_on_data_to_pstrans.
pose (pr1 aa) as aapr.
pose (total_pstrans _ _ _ aapr) as taapr.
apply taapr.
pose (pr1 aa) as aapr.
pose (total_pstrans _ _ _ aapr) as taapr.
apply taapr.
Definition total_biequivalence_counit_inv
: pstrans (id_psfunctor (total_bicat D₂))
(comp_psfunctor (total_psfunctor D₁ D₂ F FF) (total_psfunctor D₂ D₁ G GG)).
Show proof.
apply pstrans_on_data_to_pstrans.
pose (pr12 aa) as aapr.
pose (total_pstrans _ _ _ aapr) as taapr.
apply taapr.
pose (pr12 aa) as aapr.
pose (total_pstrans _ _ _ aapr) as taapr.
apply taapr.
Opaque comp_psfunctor.
Definition total_biequivalence_unit_unit_inv
: invertible_modification
(comp_pstrans
(unit_of_is_biequivalence (total_is_biequivalence_unit_counit ee))
total_biequivalence_unit_inv)
(id_pstrans (comp_psfunctor (total_psfunctor D₂ D₁ G GG)
(total_psfunctor D₁ D₂ F FF))).
Show proof.
pose (total_invmodification _ _ _ _ _ _ _ (pr21 (pr22 aa))) as m.
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
Definition total_biequivalence_unit_inv_unit
: invertible_modification
(comp_pstrans
total_biequivalence_unit_inv
(unit_of_is_biequivalence (total_is_biequivalence_unit_counit ee)))
(id_pstrans (id_psfunctor (total_bicat D₁))).
Show proof.
pose (total_invmodification _ _ _ _ _ _ _ (pr11 (pr22 aa))) as m.
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
Definition total_biequivalence_counit_counit_inv
: invertible_modification
(comp_pstrans
(counit_of_is_biequivalence (total_is_biequivalence_unit_counit ee))
total_biequivalence_counit_inv)
(id_pstrans (comp_psfunctor (total_psfunctor D₁ D₂ F FF) (total_psfunctor D₂ D₁ G GG))).
Show proof.
pose (total_invmodification _ _ _ _ _ _ _ (pr22 (pr22 aa))) as m.
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
Definition total_biequivalence_counit_inv_counit
: invertible_modification
(comp_pstrans
total_biequivalence_counit_inv
(counit_of_is_biequivalence (total_is_biequivalence_unit_counit ee)))
(id_pstrans (id_psfunctor (total_bicat D₂))).
Show proof.
pose (total_invmodification _ _ _ _ _ _ _ (pr12 (pr22 aa))) as m.
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
apply make_invertible_modification_on_data.
use tpair.
- intro X.
exact (invertible_modcomponent_of m X).
- exact (modnaturality_of (pr1 m)).
Definition total_is_biequivalence
: is_biequivalence (total_psfunctor _ _ _ FF).
Show proof.
use make_is_biequivalence_from_unit_counit.
- exact (total_psfunctor _ _ _ GG).
- exact (total_is_biequivalence_unit_counit ee).
- exact total_biequivalence_unit_inv.
- exact total_biequivalence_counit_inv.
- exact total_biequivalence_unit_unit_inv.
- exact total_biequivalence_unit_inv_unit.
- exact total_biequivalence_counit_counit_inv.
- exact total_biequivalence_counit_inv_counit.
- exact (total_psfunctor _ _ _ GG).
- exact (total_is_biequivalence_unit_counit ee).
- exact total_biequivalence_unit_inv.
- exact total_biequivalence_counit_inv.
- exact total_biequivalence_unit_unit_inv.
- exact total_biequivalence_unit_inv_unit.
- exact total_biequivalence_counit_counit_inv.
- exact total_biequivalence_counit_inv_counit.
End total_biequivalence.
End DisplayedBiequivalence.