Library UniMath.Bicategories.DisplayedBicats.FiberCategory
Fiber category of a displayed bicategory whose displayed 2-cells form a
proposition. In addition, we ask the displayed bicategory to be locally univalent and to be equipped with a local iso-cleaving. *********************************************************************************Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Section Discrete_Fiber_Precategory.
Context {C : bicat}.
Variable (D : disp_prebicat C)
(h : local_iso_cleaving D)
(c : C).
Definition discrete_fiber_ob_mor : precategory_ob_mor.
Show proof.
Definition idempunitor : invertible_2cell (identity c) (identity c · identity c).
Show proof.
Definition discrete_fiber_precategory_data : precategory_data.
Show proof.
exists discrete_fiber_ob_mor.
split; cbn.
- intro d. exact (id_disp d).
- intros x y z ff gg.
use (local_iso_cleaving_1cell h).
+ exact (identity c · identity c).
+ exact (ff ;; gg).
+ exact idempunitor.
End Discrete_Fiber_Precategory.split; cbn.
- intro d. exact (id_disp d).
- intros x y z ff gg.
use (local_iso_cleaving_1cell h).
+ exact (identity c · identity c).
+ exact (ff ;; gg).
+ exact idempunitor.
Section Discrete_Fiber.
Context {C : bicat}.
Variable (D : disp_bicat C)
(HD : disp_2cells_isaprop D)
(HD_2_1 : disp_univalent_2_1 D)
(h : local_iso_cleaving D)
(c : C).
Laws of category
Left unitality
Definition discrete_fiber_lunitor
{d d' : D c}
(ff : d -->[ id₁ c] d')
: (local_iso_cleaving_1cell h (id_disp d;; ff) (idempunitor c))
==>[ id₂ (id₁ c)] ff.
Show proof.
Definition discrete_fiber_linvunitor
{d d' : D c}
(ff : d -->[ id₁ c] d')
: ff ==>[id₂ (id₁ c) ]
(local_iso_cleaving_1cell h (id_disp d;; ff) (idempunitor c)).
Show proof.
Definition discrete_fiber_lunitor_disp_invertible
{d d' : D c}
(ff : d -->[ id₁ c] d')
: disp_invertible_2cell
(id2_invertible_2cell (id₁ c))
(local_iso_cleaving_1cell h (id_disp d;; ff) (idempunitor c))
ff.
Show proof.
{d d' : D c}
(ff : d -->[ id₁ c] d')
: (local_iso_cleaving_1cell h (id_disp d;; ff) (idempunitor c))
==>[ id₂ (id₁ c)] ff.
Show proof.
set (PP := disp_local_iso_cleaving_invertible_2cell h (id_disp d;; ff) (idempunitor c)).
set (RR := PP •• disp_lunitor ff).
assert (Heq : idempunitor c • lunitor (identity c) = id2 (identity c)).
{ abstract (apply linvunitor_lunitor). }
exact (transportf (λ x, _ ==>[x] _) Heq RR).
set (RR := PP •• disp_lunitor ff).
assert (Heq : idempunitor c • lunitor (identity c) = id2 (identity c)).
{ abstract (apply linvunitor_lunitor). }
exact (transportf (λ x, _ ==>[x] _) Heq RR).
Definition discrete_fiber_linvunitor
{d d' : D c}
(ff : d -->[ id₁ c] d')
: ff ==>[id₂ (id₁ c) ]
(local_iso_cleaving_1cell h (id_disp d;; ff) (idempunitor c)).
Show proof.
set (PP := disp_inv_cell
(disp_local_iso_cleaving_invertible_2cell
h
(id_disp d;; ff) (idempunitor c))).
assert (Heq : linvunitor (identity c) • (idempunitor c)^-1 = id2 (identity c)).
{ abstract (apply linvunitor_lunitor). }
exact (transportf (λ x, _ ==>[x] _) Heq (disp_linvunitor ff •• PP)).
(disp_local_iso_cleaving_invertible_2cell
h
(id_disp d;; ff) (idempunitor c))).
assert (Heq : linvunitor (identity c) • (idempunitor c)^-1 = id2 (identity c)).
{ abstract (apply linvunitor_lunitor). }
exact (transportf (λ x, _ ==>[x] _) Heq (disp_linvunitor ff •• PP)).
Definition discrete_fiber_lunitor_disp_invertible
{d d' : D c}
(ff : d -->[ id₁ c] d')
: disp_invertible_2cell
(id2_invertible_2cell (id₁ c))
(local_iso_cleaving_1cell h (id_disp d;; ff) (idempunitor c))
ff.
Show proof.
use tpair.
- exact (discrete_fiber_lunitor ff).
- use tpair.
+ exact (discrete_fiber_linvunitor ff).
+ abstract (split ; apply HD).
- exact (discrete_fiber_lunitor ff).
- use tpair.
+ exact (discrete_fiber_linvunitor ff).
+ abstract (split ; apply HD).
Right unitality
Definition discrete_fiber_runitor
{d d' : D c}
(ff : d -->[ id₁ c] d')
: (local_iso_cleaving_1cell h (ff;;id_disp d') (idempunitor c))
==>[ id₂ (id₁ c)] ff.
Show proof.
Definition discrete_fiber_rinvunitor
{d d' : D c}
(ff : d -->[ id₁ c] d')
: ff ==>[ id₂ (id₁ c) ]
(local_iso_cleaving_1cell h (ff;;id_disp d') (idempunitor c)).
Show proof.
Definition discrete_fiber_runitor_disp_invertible
{d d' : D c}
(ff : d -->[ id₁ c] d')
: disp_invertible_2cell
(id2_invertible_2cell (id₁ c))
(local_iso_cleaving_1cell h (ff;;id_disp d') (idempunitor c))
ff.
Show proof.
{d d' : D c}
(ff : d -->[ id₁ c] d')
: (local_iso_cleaving_1cell h (ff;;id_disp d') (idempunitor c))
==>[ id₂ (id₁ c)] ff.
Show proof.
assert (Heq : idempunitor c • runitor (identity c) = id2 (identity c)).
{ abstract (cbn
; rewrite <- lunitor_runitor_identity, linvunitor_lunitor
; reflexivity).
}
set (PP := disp_local_iso_cleaving_invertible_2cell h (ff;; id_disp d') (idempunitor c)).
exact (transportf (λ x, _ ==>[x] _) Heq (PP •• disp_runitor ff)).
{ abstract (cbn
; rewrite <- lunitor_runitor_identity, linvunitor_lunitor
; reflexivity).
}
set (PP := disp_local_iso_cleaving_invertible_2cell h (ff;; id_disp d') (idempunitor c)).
exact (transportf (λ x, _ ==>[x] _) Heq (PP •• disp_runitor ff)).
Definition discrete_fiber_rinvunitor
{d d' : D c}
(ff : d -->[ id₁ c] d')
: ff ==>[ id₂ (id₁ c) ]
(local_iso_cleaving_1cell h (ff;;id_disp d') (idempunitor c)).
Show proof.
set (PP := disp_inv_cell
(disp_local_iso_cleaving_invertible_2cell
h (ff;; id_disp d') (idempunitor c))).
assert (Heq : rinvunitor (identity c) • (idempunitor c)^-1 = id2 (identity c)).
{ unfold idempunitor. cbn.
abstract (rewrite lunitor_runitor_identity, rinvunitor_runitor
; reflexivity).
}
exact (transportf (λ x, _ ==>[x] _) Heq (disp_rinvunitor ff •• PP)).
(disp_local_iso_cleaving_invertible_2cell
h (ff;; id_disp d') (idempunitor c))).
assert (Heq : rinvunitor (identity c) • (idempunitor c)^-1 = id2 (identity c)).
{ unfold idempunitor. cbn.
abstract (rewrite lunitor_runitor_identity, rinvunitor_runitor
; reflexivity).
}
exact (transportf (λ x, _ ==>[x] _) Heq (disp_rinvunitor ff •• PP)).
Definition discrete_fiber_runitor_disp_invertible
{d d' : D c}
(ff : d -->[ id₁ c] d')
: disp_invertible_2cell
(id2_invertible_2cell (id₁ c))
(local_iso_cleaving_1cell h (ff;;id_disp d') (idempunitor c))
ff.
Show proof.
use tpair.
- exact (discrete_fiber_runitor ff).
- use tpair.
+ exact (discrete_fiber_rinvunitor ff).
+ abstract (split ; apply HD).
- exact (discrete_fiber_runitor ff).
- use tpair.
+ exact (discrete_fiber_rinvunitor ff).
+ abstract (split ; apply HD).
Associativity
Definition discrete_fiber_lassociator
{d0 d1 d2 d3 : D c}
(ff : d0 -->[ id₁ c] d1)
(gg : d1 -->[ id₁ c] d2)
(hh : d2 -->[ id₁ c] d3)
: local_iso_cleaving_1cell
h
(ff;; local_iso_cleaving_1cell h (gg;; hh) (idempunitor c))
(idempunitor c)
==>[ id₂ (id₁ c)]
local_iso_cleaving_1cell h
(local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh)
(idempunitor c).
Show proof.
Definition discrete_fiber_rassociator
{d0 d1 d2 d3 : D c}
(ff : d0 -->[ id₁ c] d1)
(gg : d1 -->[ id₁ c] d2)
(hh : d2 -->[ id₁ c] d3)
: local_iso_cleaving_1cell
h (local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh)
(idempunitor c)
==>[ id₂ (id₁ c)]
local_iso_cleaving_1cell
h
(ff;; local_iso_cleaving_1cell h (gg;; hh) (idempunitor c)) (idempunitor c).
Show proof.
Definition discrete_fiber_lassociator_disp_invertible
{d0 d1 d2 d3 : D c}
(ff : d0 -->[ id₁ c] d1)
(gg : d1 -->[ id₁ c] d2)
(hh : d2 -->[ id₁ c] d3)
: disp_invertible_2cell
(id2_invertible_2cell (id₁ c))
(local_iso_cleaving_1cell
h
(ff;; local_iso_cleaving_1cell h (gg;; hh) (idempunitor c))
(idempunitor c))
(local_iso_cleaving_1cell
h
(local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh)
(idempunitor c)).
Show proof.
Definition discrete_fiber_is_precategory
: is_precategory (discrete_fiber_precategory_data D h c).
Show proof.
Definition discrete_fiber_precategory : precategory.
Show proof.
Definition discrete_fiber_category : category.
Show proof.
Section IsoInDiscreteFiber.
Context {x y : discrete_fiber_category}
(f : x --> y)
(Hf : disp_left_adjoint_equivalence
(internal_adjoint_equivalence_identity c)
f).
Let finv : y --> x := pr11 Hf.
Let η : disp_invertible_2cell
(linvunitor_invertible_2cell _)
(id_disp x)
(f ;; pr11 Hf)
:= pr121 Hf ,, pr122 Hf.
Let ε : disp_invertible_2cell
(lunitor_invertible_2cell _)
(pr11 Hf ;; f)
(id_disp y)
:= pr221 Hf ,, pr222 Hf.
Local Lemma is_z_iso_discrete_fiber_left_inv
: finv · f = id₁ y.
Show proof.
Local Lemma is_z_iso_discrete_fiber_right_inv
: f · finv = id₁ x.
Show proof.
Definition is_z_iso_discrete_fiber
: is_z_isomorphism f.
Show proof.
End Discrete_Fiber.
{d0 d1 d2 d3 : D c}
(ff : d0 -->[ id₁ c] d1)
(gg : d1 -->[ id₁ c] d2)
(hh : d2 -->[ id₁ c] d3)
: local_iso_cleaving_1cell
h
(ff;; local_iso_cleaving_1cell h (gg;; hh) (idempunitor c))
(idempunitor c)
==>[ id₂ (id₁ c)]
local_iso_cleaving_1cell h
(local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh)
(idempunitor c).
Show proof.
assert ((idempunitor c
• (identity c ◃ idempunitor c))
• lassociator _ _ _
• ((lunitor _ ▹ identity c)
• lunitor _) = id2 _) as Heq.
{
abstract
(cbn ;
rewrite !lwhisker_hcomp, !rwhisker_hcomp ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite triangle_r_inv ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite rassociator_lassociator, id2_left ;
rewrite !(maponpaths (λ z, _ • z) (vassocr _ _ _)) ;
rewrite <- hcomp_vcomp ;
rewrite <- lunitor_V_id_is_left_unit_V_id ;
rewrite id2_left, linvunitor_lunitor ;
rewrite hcomp_identity, id2_left ;
apply linvunitor_lunitor
).
}
refine (transportf (λ z, _ ==>[ z ] _) Heq _).
cbn.
refine (_ •• disp_lassociator ff gg hh •• _).
- refine (_ •• _).
+ exact (disp_local_iso_cleaving_invertible_2cell
h (ff;;local_iso_cleaving_1cell h (gg;; hh) (idempunitor c))
(idempunitor c)).
+ refine (disp_lwhisker _ _).
exact (disp_local_iso_cleaving_invertible_2cell
h (gg ;; hh) (idempunitor c)).
- refine (_ •• _).
+ refine (disp_rwhisker _ _).
exact (disp_inv_cell (disp_local_iso_cleaving_invertible_2cell
h (ff ;; gg) (idempunitor c))).
+ exact (disp_inv_cell (disp_local_iso_cleaving_invertible_2cell
h (local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);;
hh) (idempunitor c))).
• (identity c ◃ idempunitor c))
• lassociator _ _ _
• ((lunitor _ ▹ identity c)
• lunitor _) = id2 _) as Heq.
{
abstract
(cbn ;
rewrite !lwhisker_hcomp, !rwhisker_hcomp ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite triangle_r_inv ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite rassociator_lassociator, id2_left ;
rewrite !(maponpaths (λ z, _ • z) (vassocr _ _ _)) ;
rewrite <- hcomp_vcomp ;
rewrite <- lunitor_V_id_is_left_unit_V_id ;
rewrite id2_left, linvunitor_lunitor ;
rewrite hcomp_identity, id2_left ;
apply linvunitor_lunitor
).
}
refine (transportf (λ z, _ ==>[ z ] _) Heq _).
cbn.
refine (_ •• disp_lassociator ff gg hh •• _).
- refine (_ •• _).
+ exact (disp_local_iso_cleaving_invertible_2cell
h (ff;;local_iso_cleaving_1cell h (gg;; hh) (idempunitor c))
(idempunitor c)).
+ refine (disp_lwhisker _ _).
exact (disp_local_iso_cleaving_invertible_2cell
h (gg ;; hh) (idempunitor c)).
- refine (_ •• _).
+ refine (disp_rwhisker _ _).
exact (disp_inv_cell (disp_local_iso_cleaving_invertible_2cell
h (ff ;; gg) (idempunitor c))).
+ exact (disp_inv_cell (disp_local_iso_cleaving_invertible_2cell
h (local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);;
hh) (idempunitor c))).
Definition discrete_fiber_rassociator
{d0 d1 d2 d3 : D c}
(ff : d0 -->[ id₁ c] d1)
(gg : d1 -->[ id₁ c] d2)
(hh : d2 -->[ id₁ c] d3)
: local_iso_cleaving_1cell
h (local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh)
(idempunitor c)
==>[ id₂ (id₁ c)]
local_iso_cleaving_1cell
h
(ff;; local_iso_cleaving_1cell h (gg;; hh) (idempunitor c)) (idempunitor c).
Show proof.
assert ((idempunitor c • (idempunitor c ▹ identity c))
• rassociator _ _ _
• ((identity c ◃ lunitor _)
• lunitor _)
= id2 _) as Heq.
{
abstract
(cbn ;
rewrite !lwhisker_hcomp, !rwhisker_hcomp ;
rewrite lunitor_V_id_is_left_unit_V_id ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite <- triangle_l_inv ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite lassociator_rassociator, id2_left ;
rewrite !(maponpaths (λ z, _ • z) (vassocr _ _ _)) ;
rewrite <- hcomp_vcomp ;
rewrite id2_left, linvunitor_lunitor ;
rewrite hcomp_identity, id2_left ;
rewrite <- lunitor_V_id_is_left_unit_V_id ;
rewrite linvunitor_lunitor ;
reflexivity
).
}
refine (transportf (λ z, _ ==>[ z ] _) Heq _).
cbn.
refine (_ •• disp_rassociator ff gg hh •• _).
- refine (disp_local_iso_cleaving_invertible_2cell
h (local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh) (idempunitor c)
•• _).
refine (disp_rwhisker _ _).
exact (disp_local_iso_cleaving_invertible_2cell h (ff ;; gg) (idempunitor c)).
- refine (_ •• _).
+ refine (disp_lwhisker _ _).
exact (disp_inv_cell
(disp_local_iso_cleaving_invertible_2cell
h (gg ;; hh) (idempunitor c))).
+ exact (disp_inv_cell ((disp_local_iso_cleaving_invertible_2cell
h
(ff;;local_iso_cleaving_1cell
h (gg;; hh)
(idempunitor c))
(idempunitor c)))).
• rassociator _ _ _
• ((identity c ◃ lunitor _)
• lunitor _)
= id2 _) as Heq.
{
abstract
(cbn ;
rewrite !lwhisker_hcomp, !rwhisker_hcomp ;
rewrite lunitor_V_id_is_left_unit_V_id ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite <- triangle_l_inv ;
rewrite !vassocl ;
rewrite !(maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)) ;
rewrite lassociator_rassociator, id2_left ;
rewrite !(maponpaths (λ z, _ • z) (vassocr _ _ _)) ;
rewrite <- hcomp_vcomp ;
rewrite id2_left, linvunitor_lunitor ;
rewrite hcomp_identity, id2_left ;
rewrite <- lunitor_V_id_is_left_unit_V_id ;
rewrite linvunitor_lunitor ;
reflexivity
).
}
refine (transportf (λ z, _ ==>[ z ] _) Heq _).
cbn.
refine (_ •• disp_rassociator ff gg hh •• _).
- refine (disp_local_iso_cleaving_invertible_2cell
h (local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh) (idempunitor c)
•• _).
refine (disp_rwhisker _ _).
exact (disp_local_iso_cleaving_invertible_2cell h (ff ;; gg) (idempunitor c)).
- refine (_ •• _).
+ refine (disp_lwhisker _ _).
exact (disp_inv_cell
(disp_local_iso_cleaving_invertible_2cell
h (gg ;; hh) (idempunitor c))).
+ exact (disp_inv_cell ((disp_local_iso_cleaving_invertible_2cell
h
(ff;;local_iso_cleaving_1cell
h (gg;; hh)
(idempunitor c))
(idempunitor c)))).
Definition discrete_fiber_lassociator_disp_invertible
{d0 d1 d2 d3 : D c}
(ff : d0 -->[ id₁ c] d1)
(gg : d1 -->[ id₁ c] d2)
(hh : d2 -->[ id₁ c] d3)
: disp_invertible_2cell
(id2_invertible_2cell (id₁ c))
(local_iso_cleaving_1cell
h
(ff;; local_iso_cleaving_1cell h (gg;; hh) (idempunitor c))
(idempunitor c))
(local_iso_cleaving_1cell
h
(local_iso_cleaving_1cell h (ff;; gg) (idempunitor c);; hh)
(idempunitor c)).
Show proof.
use tpair.
- exact (discrete_fiber_lassociator ff gg hh).
- use tpair.
+ exact (discrete_fiber_rassociator ff gg hh).
+ abstract (split ; apply HD).
- exact (discrete_fiber_lassociator ff gg hh).
- use tpair.
+ exact (discrete_fiber_rassociator ff gg hh).
+ abstract (split ; apply HD).
Definition discrete_fiber_is_precategory
: is_precategory (discrete_fiber_precategory_data D h c).
Show proof.
apply is_precategory_one_assoc_to_two.
repeat split.
- cbn ; intros a b f.
exact (disp_isotoid_2_1
D HD_2_1
(idpath _)
_
_
(discrete_fiber_lunitor_disp_invertible f)).
- cbn ; intros a b f.
exact (disp_isotoid_2_1
D HD_2_1
(idpath _)
_
_
(discrete_fiber_runitor_disp_invertible f)).
-intros d0 d1 d2 d3 ff gg hh.
exact (disp_isotoid_2_1
D HD_2_1
(idpath _)
_
_
(discrete_fiber_lassociator_disp_invertible ff gg hh)).
repeat split.
- cbn ; intros a b f.
exact (disp_isotoid_2_1
D HD_2_1
(idpath _)
_
_
(discrete_fiber_lunitor_disp_invertible f)).
- cbn ; intros a b f.
exact (disp_isotoid_2_1
D HD_2_1
(idpath _)
_
_
(discrete_fiber_runitor_disp_invertible f)).
-intros d0 d1 d2 d3 ff gg hh.
exact (disp_isotoid_2_1
D HD_2_1
(idpath _)
_
_
(discrete_fiber_lassociator_disp_invertible ff gg hh)).
Definition discrete_fiber_precategory : precategory.
Show proof.
use make_precategory.
- exact (discrete_fiber_precategory_data D h c).
- exact discrete_fiber_is_precategory.
- exact (discrete_fiber_precategory_data D h c).
- exact discrete_fiber_is_precategory.
Definition discrete_fiber_category : category.
Show proof.
use make_category.
- exact discrete_fiber_precategory.
- intros x y f g.
apply (isofhlevelweqb 1 (make_weq _ (HD_2_1 _ _ _ _ (idpath _) x y f g))).
use isofhleveltotal2.
+ apply HD.
+ intros.
apply isaprop_is_disp_invertible_2cell.
- exact discrete_fiber_precategory.
- intros x y f g.
apply (isofhlevelweqb 1 (make_weq _ (HD_2_1 _ _ _ _ (idpath _) x y f g))).
use isofhleveltotal2.
+ apply HD.
+ intros.
apply isaprop_is_disp_invertible_2cell.
Section IsoInDiscreteFiber.
Context {x y : discrete_fiber_category}
(f : x --> y)
(Hf : disp_left_adjoint_equivalence
(internal_adjoint_equivalence_identity c)
f).
Let finv : y --> x := pr11 Hf.
Let η : disp_invertible_2cell
(linvunitor_invertible_2cell _)
(id_disp x)
(f ;; pr11 Hf)
:= pr121 Hf ,, pr122 Hf.
Let ε : disp_invertible_2cell
(lunitor_invertible_2cell _)
(pr11 Hf ;; f)
(id_disp y)
:= pr221 Hf ,, pr222 Hf.
Local Lemma is_z_iso_discrete_fiber_left_inv
: finv · f = id₁ y.
Show proof.
use (disp_isotoid_2_1 D HD_2_1 (idpath _)).
refine (transportf
(λ z, disp_invertible_2cell z _ _)
_
(vcomp_disp_invertible
(disp_local_iso_cleaving_invertible_2cell
h
(finv ;; f)
(idempunitor c))
ε)).
use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ; cbn.
apply linvunitor_lunitor.
refine (transportf
(λ z, disp_invertible_2cell z _ _)
_
(vcomp_disp_invertible
(disp_local_iso_cleaving_invertible_2cell
h
(finv ;; f)
(idempunitor c))
ε)).
use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ; cbn.
apply linvunitor_lunitor.
Local Lemma is_z_iso_discrete_fiber_right_inv
: f · finv = id₁ x.
Show proof.
use (disp_isotoid_2_1 D HD_2_1 (idpath _)).
refine (transportf
(λ z, disp_invertible_2cell z _ _)
_
(vcomp_disp_invertible
(disp_local_iso_cleaving_invertible_2cell
h
(f ;; finv)
(idempunitor c))
(inverse_of_disp_invertible_2cell η))).
use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ; cbn.
apply linvunitor_lunitor.
refine (transportf
(λ z, disp_invertible_2cell z _ _)
_
(vcomp_disp_invertible
(disp_local_iso_cleaving_invertible_2cell
h
(f ;; finv)
(idempunitor c))
(inverse_of_disp_invertible_2cell η))).
use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ; cbn.
apply linvunitor_lunitor.
Definition is_z_iso_discrete_fiber
: is_z_isomorphism f.
Show proof.
use make_is_z_isomorphism.
- exact finv.
- split.
+ exact is_z_iso_discrete_fiber_right_inv.
+ exact is_z_iso_discrete_fiber_left_inv.
End IsoInDiscreteFiber.- exact finv.
- split.
+ exact is_z_iso_discrete_fiber_right_inv.
+ exact is_z_iso_discrete_fiber_left_inv.
End Discrete_Fiber.