Library UniMath.Bicategories.Monads.Examples.MonadsInStructuredCategories
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.pullbacks.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.Preservation.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.EndoMap.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.MonadsLax.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell.
Require Import UniMath.Bicategories.Monads.Examples.MonadsInBicatOfUnivCats.
Require Import UniMath.Bicategories.Monads.Examples.MonadsInBicatOfCats.
Require Import UniMath.Bicategories.Monads.Examples.MonadsInTotalBicat.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Actegories.Actegories.
Require Import UniMath.CategoryTheory.Actegories.MorphismsOfActegories.
Require Import UniMath.Bicategories.MonoidalCategories.BicatOfActegories.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.pullbacks.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.Preservation.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.EndoMap.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.MonadsLax.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell.
Require Import UniMath.Bicategories.Monads.Examples.MonadsInBicatOfUnivCats.
Require Import UniMath.Bicategories.Monads.Examples.MonadsInBicatOfCats.
Require Import UniMath.Bicategories.Monads.Examples.MonadsInTotalBicat.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Actegories.Actegories.
Require Import UniMath.CategoryTheory.Actegories.MorphismsOfActegories.
Require Import UniMath.Bicategories.MonoidalCategories.BicatOfActegories.
1. Monads in the bicategory of categories with a terminal object
Definition make_mnd_univ_cat_with_terminal_obj
(C : univalent_category)
(M : Monad C)
(TC : Terminal C)
(MT : preserves_terminal M)
: mnd univ_cat_with_terminal_obj.
Show proof.
(C : univalent_category)
(M : Monad C)
(TC : Terminal C)
(MT : preserves_terminal M)
: mnd univ_cat_with_terminal_obj.
Show proof.
use make_mnd_total_bicat.
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (TC ,, tt).
+ exact (tt ,, MT).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (TC ,, tt).
+ exact (tt ,, MT).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
2. Monads in the bicategory of categories with binary products
Definition make_mnd_univ_cat_with_binprod
(C : univalent_category)
(M : Monad C)
(BC : BinProducts C)
(MB : preserves_binproduct M)
: mnd univ_cat_with_binprod.
Show proof.
(C : univalent_category)
(M : Monad C)
(BC : BinProducts C)
(MB : preserves_binproduct M)
: mnd univ_cat_with_binprod.
Show proof.
use make_mnd_total_bicat.
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (BC ,, tt).
+ exact (tt ,, MB).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (BC ,, tt).
+ exact (tt ,, MB).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
3. Monads in the bicategory of categories with pullbacks
Definition make_mnd_univ_cat_with_pb
(C : univalent_category)
(M : Monad C)
(PC : Pullbacks C)
(MP : preserves_pullback M)
: mnd univ_cat_with_pb.
Show proof.
(C : univalent_category)
(M : Monad C)
(PC : Pullbacks C)
(MP : preserves_pullback M)
: mnd univ_cat_with_pb.
Show proof.
use make_mnd_total_bicat.
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (PC ,, tt).
+ exact (tt ,, MP).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (PC ,, tt).
+ exact (tt ,, MP).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
4. Monads in the bicategory of categories with finite limits
Definition make_mnd_univ_cat_with_finlim
(C : univalent_category)
(M : Monad C)
(TC : Terminal C)
(PC : Pullbacks C)
(MT : preserves_terminal M)
(MP : preserves_pullback M)
: mnd univ_cat_with_finlim.
Show proof.
(C : univalent_category)
(M : Monad C)
(TC : Terminal C)
(PC : Pullbacks C)
(MT : preserves_terminal M)
(MP : preserves_pullback M)
: mnd univ_cat_with_finlim.
Show proof.
use make_mnd_total_bicat.
- apply disp_2cells_isaprop_prod ; apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact ((TC ,, tt) ,, (PC ,, tt)).
+ exact ((tt ,, MT) ,, (tt ,, MP)).
+ cbn.
exact ((tt ,, tt) ,, (tt ,, tt)).
+ cbn.
exact ((tt ,, tt) ,, (tt ,, tt)).
- apply disp_2cells_isaprop_prod ; apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact ((TC ,, tt) ,, (PC ,, tt)).
+ exact ((tt ,, MT) ,, (tt ,, MP)).
+ cbn.
exact ((tt ,, tt) ,, (tt ,, tt)).
+ cbn.
exact ((tt ,, tt) ,, (tt ,, tt)).
5. Monads in the bicategory of categories with an initial object
Definition make_mnd_univ_cat_with_initial
(C : univalent_category)
(M : Monad C)
(IC : Initial C)
(MI : preserves_initial M)
: mnd univ_cat_with_initial.
Show proof.
(C : univalent_category)
(M : Monad C)
(IC : Initial C)
(MI : preserves_initial M)
: mnd univ_cat_with_initial.
Show proof.
use make_mnd_total_bicat.
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (IC ,, tt).
+ exact (tt ,, MI).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (IC ,, tt).
+ exact (tt ,, MI).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
6. Monads in the bicategory of categories with binary coproducts
Definition make_mnd_univ_cat_with_bincoprod
(C : univalent_category)
(M : Monad C)
(SC : BinCoproducts C)
(MS : preserves_bincoproduct M)
: mnd univ_cat_with_bincoprod.
Show proof.
(C : univalent_category)
(M : Monad C)
(SC : BinCoproducts C)
(MS : preserves_bincoproduct M)
: mnd univ_cat_with_bincoprod.
Show proof.
use make_mnd_total_bicat.
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (SC ,, tt).
+ exact (tt ,, MS).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
- apply disp_2cells_isaprop_subbicat.
- use Monad_to_mnd_bicat_of_univ_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact (SC ,, tt).
+ exact (tt ,, MS).
+ exact (tt ,, tt).
+ exact (tt ,, tt).
7. Monads in the bicategory of actegories
Definition make_mnd_actegory
(V : category)
(Mon_V : monoidal V)
(C : category)
(M : Monad C)
(Act : actegory Mon_V C)
(Ml : lineator_lax Mon_V Act Act M)
(ηlinear : is_linear_nat_trans (identity_lineator_lax Mon_V Act) Ml (η M))
(μlinear : is_linear_nat_trans (comp_lineator_lax Mon_V Ml Ml) Ml (μ M))
: mnd (actbicat Mon_V).
Show proof.
(V : category)
(Mon_V : monoidal V)
(C : category)
(M : Monad C)
(Act : actegory Mon_V C)
(Ml : lineator_lax Mon_V Act Act M)
(ηlinear : is_linear_nat_trans (identity_lineator_lax Mon_V Act) Ml (η M))
(μlinear : is_linear_nat_trans (comp_lineator_lax Mon_V Ml Ml) Ml (μ M))
: mnd (actbicat Mon_V).
Show proof.
use make_mnd_total_bicat.
- apply actbicat_disp_2cells_isaprop.
- use Monad_to_mnd_bicat_of_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact Act.
+ exact Ml.
+ exact ηlinear.
+ exact μlinear.
- apply actbicat_disp_2cells_isaprop.
- use Monad_to_mnd_bicat_of_cats.
+ exact C.
+ exact M.
- use make_disp_mnd.
+ exact Act.
+ exact Ml.
+ exact ηlinear.
+ exact μlinear.