Library UniMath.Bicategories.MonoidalCategories.MonoidalDialgebrasInserters

**********************************************************
Ralph Matthes
August 2022, simplified by Kobe Wullaert in December 2022
**********************************************************
Contents :
  • identifies monoidal dialgebras as inserters in the bicategory of whiskered monoidal categories

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.categories.Dialgebras.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.

Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.

Require Import UniMath.Bicategories.Core.Bicat.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.Limits.Inserters.

Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.

Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Functors.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalDialgebras.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.MonoidalFunctorLifting.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.

Require Import UniMath.Bicategories.MonoidalCategories.BicatOfWhiskeredMonCats.
Require Import UniMath.Bicategories.Limits.Examples.BicatOfCatsLimits.

Local Open Scope cat.
Local Open Scope mor_disp_scope.

Import BifunctorNotations.
Import MonoidalNotations.

Local Lemma equality_2cells_monbicat
  {Mon_V Mon_W : monbicat} {Fm Gm : monbicat Mon_V, Mon_W }
  (αm βm : (hom Mon_V Mon_W)⟦Fm, Gm)
  : ( x : pr11 Mon_V, pr11 αm x = pr11 βm x) -> αm = βm.
Show proof.
  intro p.
  apply subtypePath.
  { intro; apply isaprop_is_mon_nat_trans. }
  apply subtypePath.
  { intro; apply isaprop_is_nat_trans. apply homset_property. }
  apply funextsec ; intro ; apply p.

Section FixTwoMonoidalFunctors.

Context {Mon_V Mon_W : monbicat} (Fm Gm : monbicat Mon_V, Mon_W ).

  Definition monbicat_inserter_cone :
    inserter_cone Fm Gm.
  Show proof.
    cbn in Fm, Gm.
    use make_inserter_cone.
    - exact (dialgebra (pr1 Fm) (pr1 Gm) ,, dialgebra_monoidal (pr2 Fm) (pr2 Gm)).
    - exists (dialgebra_pr1 (pr1 Fm) (pr1 Gm)).
      apply dialgebra_monoidal_pr1.
    - exists (dialgebra_nat_trans (pr1 Fm) (pr1 Gm)).
      apply dialgebra_nat_trans_is_mon_nat_trans.

  Local Definition underlying_inserter_cone (q : inserter_cone Fm Gm) : inserter_cone (pr1 Fm) (pr1 Gm).
  Show proof.
    use make_inserter_cone.
    - exact (pr11 q).
    - exact (pr1 (inserter_cone_pr1 q)).
    - exact (pr1 (inserter_cone_cell q)).

  Local Definition underlying_inserter_1cell (q : inserter_cone Fm Gm) :
    inserter_1cell (underlying_inserter_cone q) (dialgebra_inserter_cone (pr1 Fm) (pr1 Gm))
    := dialgebra_inserter_ump_1 (pr1 Fm) (pr1 Gm) (underlying_inserter_cone q).

now comes the very efficient use of monoidal functor lifting
  Local Definition fmonoidal_underlying_inserter_1cell (q : inserter_cone Fm Gm) :
    fmonoidal (pr21 q)
              (dialgebra_monoidal (pr2 Fm) ((pr12 Gm): fmonoidal_lax (pr2 Mon_V) (pr2 Mon_W) _))
              (pr1 (underlying_inserter_1cell q)).
  Show proof.
    use functorlifting_fmonoidal.
    3: {
      use monoidal_nat_trans_to_dialgebra_lifting_strong.
      + use tpair.
        * apply (pr12 q).
        * apply (pr212 q).
      + apply (pr22 q).
    }

  Lemma is_mon_nat_trans_underlying_inserter_1cell_pr1 (q : inserter_cone Fm Gm) :
    is_mon_nat_trans
      (comp_fmonoidal (fmonoidal_underlying_inserter_1cell q) (dialgebra_monoidal_pr1 (pr2 Fm) (pr12 Gm)))
      (pr12 (inserter_cone_pr1 q))
      (pr1 (inserter_1cell_pr1 (underlying_inserter_1cell q))).
  Show proof.
    split.
    - intros x y.
      cbn.
      unfold projection_preserves_tensordata, fmonoidal_preservestensordata.
      rewrite id_left.
      rewrite id_right.
      etrans.
      2: { apply cancel_postcomposition.
           apply pathsinv0, tensor_id_id. }
      apply pathsinv0, id_left.
    - red. cbn.
      unfold projection_preserves_unit, fmonoidal_preservesunit.
      rewrite id_left.
      apply id_right.

  Definition monbicat_inserter_ump_1_inv_2cell
             (q : inserter_cone Fm Gm)
    : invertible_2cell
    ((_,, fmonoidal_underlying_inserter_1cell q : monbicat q, monbicat_inserter_cone)
       · inserter_cone_pr1 monbicat_inserter_cone) (inserter_cone_pr1 q).
  Show proof.
    use tpair.
    - exists (pr112 (underlying_inserter_1cell q)).
      apply (is_mon_nat_trans_underlying_inserter_1cell_pr1 q).
    - use tpair.
      + use tpair.
        * exact (pr12 (inserter_1cell_pr1 (underlying_inserter_1cell q))).
        * apply is_mon_nat_trans_pointwise_inverse.
          apply (is_mon_nat_trans_underlying_inserter_1cell_pr1 q).
      + abstract (split ; use equality_2cells_monbicat ; intro ; apply id_left).

  Definition monbicat_inserter_ump_1 :
    has_inserter_ump_1 monbicat_inserter_cone.
  Show proof.
    intro q.
    use make_inserter_1cell.
    - exists (underlying_inserter_1cell q).
      exact (fmonoidal_underlying_inserter_1cell q).
    - exact (monbicat_inserter_ump_1_inv_2cell q).
    - abstract (
          use equality_2cells_monbicat ;
          intro ;
          cbn ;
          rewrite id_right, id_left ;
          etrans ;
          [ apply maponpaths ;
            apply functor_id | rewrite id_right] ;
          refine (! id_left _ @ _) ;
          apply maponpaths_2, pathsinv0, functor_id).

  Section UMP2Prep.

  Context {Mon_U : monbicat}
  {Hm H'm : monbicat Mon_U, monbicat_inserter_cone}
  (α : prebicat_cells monbicat (Hm · inserter_cone_pr1 monbicat_inserter_cone) (H'm · inserter_cone_pr1 monbicat_inserter_cone))
  (Hyp : vcomp2
          (vcomp2 (vcomp2 (rassociator Hm (inserter_cone_pr1 monbicat_inserter_cone) Fm) (lwhisker Hm (inserter_cone_cell monbicat_inserter_cone)))
             (lassociator Hm (inserter_cone_pr1 monbicat_inserter_cone) Gm)) (rwhisker Gm α) =
        vcomp2 (vcomp2 (vcomp2 (rwhisker Fm α) (rassociator H'm (inserter_cone_pr1 monbicat_inserter_cone) Fm)) (lwhisker H'm (inserter_cone_cell monbicat_inserter_cone)))
          (lassociator H'm (inserter_cone_pr1 monbicat_inserter_cone) Gm)).

  Local Definition underlying_inserter_ump_2
    : ζ : prebicat_cells bicat_of_cats (pr1 Hm) (pr1 H'm),
        rwhisker (inserter_cone_pr1 (dialgebra_inserter_cone (pr1 Fm) (pr1 Gm))) ζ = pr1 α
    := dialgebra_inserter_ump_2 (pr1 Fm) (pr1 Gm) (pr1 Mon_U) (pr1 Hm) (pr1 H'm)
         (pr1 α) (maponpaths pr1 Hyp).

  Local Definition underlying_inserter_ump_cell : prebicat_cells bicat_of_cats (pr1 Hm) (pr1 H'm)
    := pr1 underlying_inserter_ump_2.

  Local Lemma is_mon_nat_trans_underlying_inserter_ump_cell :
    is_mon_nat_trans (pr2 Hm : fmonoidal (pr2 Mon_U) _ _)
                     (pr2 H'm : fmonoidal (pr2 Mon_U) _ _)
                     underlying_inserter_ump_cell.
  Show proof.
    split.
    - intros x y.
      use total2_paths_f; [cbn | apply (pr1 Mon_W)].
      assert (aux := pr12 α x y). cbn in aux.
      unfold projection_preserves_tensordata in aux.
      do 2 rewrite id_left in aux.
      exact aux.
    - use total2_paths_f; [cbn | apply (pr1 Mon_W)].
      assert (aux := pr22 α). red in aux; cbn in aux.
      unfold projection_preserves_unit in aux.
      do 2 rewrite id_left in aux.
      exact aux.

  End UMP2Prep.

  Definition monbicat_inserter_ump_2 :
    has_inserter_ump_2 monbicat_inserter_cone.
  Show proof.
    intros Mon_U Hm H'm α Hyp.
    exists (underlying_inserter_ump_cell α Hyp,,
                                    is_mon_nat_trans_underlying_inserter_ump_cell α Hyp).
    abstract (use equality_2cells_monbicat ; intro ; apply idpath).

  Definition monbicat_inserter_ump_eq :
    has_inserter_ump_eq monbicat_inserter_cone.
  Show proof.
    intros Mon_U Hm H'm α Hyp ϕ1 ϕ2 eqϕ1 eqϕ2.
    use total2_paths_f; [cbn | apply isaprop_is_mon_nat_trans].
    use (dialgebra_inserter_ump_eq (pr1 Fm) (pr1 Gm) (pr1 Mon_U) (pr1 Hm) (pr1 H'm)
         (pr1 α) (maponpaths pr1 Hyp)).
    - exact (maponpaths pr1 eqϕ1).
    - exact (maponpaths pr1 eqϕ2).

End FixTwoMonoidalFunctors.

  Definition has_inserters_monbicat : has_inserters monbicat.
  Show proof.
    intros Mon_V Mon_W Fm Gm.
    cbn in Fm, Gm.
    exists (dialgebra (pr1 Fm) (pr1 Gm) ,, dialgebra_monoidal (pr2 Fm) (pr2 Gm)).
    simple refine (_ ,, _ ,, _).
    - cbn. exists (dialgebra_pr1 (pr1 Fm) (pr1 Gm)).
      apply dialgebra_monoidal_pr1.
    - cbn. exists (dialgebra_nat_trans (pr1 Fm) (pr1 Gm)).
      apply dialgebra_nat_trans_is_mon_nat_trans.
    - simple refine (_ ,, _ ,, _).
      + exact (monbicat_inserter_ump_1 Fm Gm).
      + exact (monbicat_inserter_ump_2 Fm Gm).
      + exact (monbicat_inserter_ump_eq Fm Gm).